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Abstract

In the past years a lot of research has been done to analyse buckling behavior of
structures in general and post-buckling behavior in particular. A lot of attention
is paid to the mode-jumping phenomenon. When a structure is loaded beyond
the limit point, the deformation mode jumps to another stable mode. This
attends large velocities and is therefore a purely dynamic process. In finite
element (FEM) analysis this behavior can be simulated with a transient solving
routine.

In this thesis the numerical aspects of the mode-jumping process of beam
structures are considered. For this purpose, two new features are implemented
in the finite element package B2000; a set of beam elements and a nonlinear
transient solver. In principle, the development of both can be seen as two
different things.

The three beam elements can be divided into two categories. The 2-dim-
ensional beam elements B2.EP and B2.EP+ are based on papers by Eriksson
and Pacoste [5, 6]. The strain and bending is based on a model by Reissner.
The behavior of this type of beam is even in the post buckling region still cor-
rect as opposed to the beams governing the Lagrange-Green strain formulation.
Furthermore the Bernoulli hypothesis is applied. This implies that the beams
cannot deform in a pure shear state. Due to the absence of out-of-plane defor-
mations and the corresponding 3-dimensional rotation tensor, the theoretical
background is rather straightforward. The 2-dimensional beam elements serve
as a starting point for the development of a fully 3-dimensional beam.

The 3-dimensional beam element B2.NL is based on papers by Simo et
al. [29, 30]. It is a so-called finite rotations element: the nonlinear behavior
of these elements is correct for large rotations. It can therefore be added to the
same family of elements to which Rebel’s shell elements are reckoned. The de-
scription of the rotation is based on the classical formulation which is proposed
by Rodrigues [3]. The strains are described using Reissner’s formulation, just
as with the 2-dimensional elements. The Bernoulli hypothesis is not used. At
the moment, the material properties are fully elastic.

As opposed to the 2-dimensional beam element, the 3-dimensional element
does not work properly in nonlinear calculations at the moment. There may be
two reasons for this. First, there might be some locking phenomena (membrane
locking) which has not been tackled properly. Second, the description of the
three dimensional rotations might be wrong.

All beam elements have the same formulation for the mass matrix. The total
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mass of the beam is divided over the 2 nodes. The inertia terms (the rotational
mass) are neglected, Although this formulation is simplified, it appeared to be
very effective in transient analyses. This mass representation is therefore also
applied to Rebel’s shell elements and the cable elements in B2000.

The implicit transient processor B2TRANS is based on the B2IDTI processor,
written by K. Yildirim [34]. The equations of motion are solved by a spe-
cial group of implicit time integration methods, the linear multi-step (LMS)
methods. Using Jensen’s algorithm [13] the system of second order differential
equations is transformed into a first order one. Park’s LMS method is used
to transform this ODE into a nonlinear system of equation, which is solved
iteratively, using the Newton Raphson method.

The simulation of mode-jumping phenomena is described by Riks et al. [26,
27, 28]. In his papers he suggests fast and accurate simulation technique. The
stable, pre-buckling deformation behavior, up to the limit points is calculated
according to the ordinary Riks’ path-following method [25]. As soon as the equi-
librium becomes unstable (this can be checked by examining the decomposed
stiffness matrix), the response is calculated with the transient solver. The load
is raised to a level that is higher than the limit load. The structure is released
from this point. Since the corresponding equilibrium is unstable, the structure
will leave this primary path with high velocities and go to a new, stable equi-
librium on the secondary stable path with a different deformation mode. Apart
from the 2-dimensional beam element, it is also possible to perform simulations
with the the finite rotation shell elements.

A number of numerical examples is used to show the reliability of the beam
elements and the transient macro-processor. There are also some examples
that show mode-jumping simulations. As can be seen from the results of these
tests, the new features (except for the nonlinear 3-dimensional element) work
decently. The performances of the new, simplified mass description in mode-
jumping simulations are also good.

In the near future the solution of the problems with the 3-dimensional beam
element has got the highest priority. Since the element works perfectly in linear
analyses, it is most likely that just some small fixes will be enough. When
this is done some other aspects can be improved. All beam elements can be
equipped with a plasticity model. The LMS algorithm as implemented in the
transient processor can be adapted in order to be able to calculate dynamic
behavior with large rotations of structures. This also requires a closer look to
the nonlinear mass matrix. The improved elements and processor can be applied
in the continuing research of the mode-jumping phenomenon. Especially the
influence of the initial conditions and the damping constants must be regarded.



Samenvatting

De laatste jaren is er veel onderzoek gedaan naar knik gedrag in het algemeen
en naknik gedrag in het bijzonder. Het ‘mode-jumping’ verschijnsel krijgt hier-
bij steeds meer aandacht. Wanneer een constructie wordt belast tot voorbij zijn
limietpunt slaat het vervormingspatroon (de ‘mode’) razendsnel om (de ‘jump’)
naar een andere, stabiele vervorming. Dit alles gaat gepaard met hoge snelhe-
den en is daarom een puur dynamisch proces. In eindige elementen (EEM)
berekeningen kan dit gedrag gesimuleerd worden met een transiente oplosme-
thode.

In dit afstudeerrapport worden de numerieke aspecten van mode-jumping
van balkconstructies beschouwd. Hiervoor zijn twee nieuwe onderdelen in de
EEM code B2000 geimplementeerd: een serie balkelementen en een niet-lineaire
transiente oplosmethode. De ontwikkeling van deze twee zaken staat in principe
los van elkaar.

De drie balkelementen kunnen worden onderverdeeld in twee catagorieén.
De twee 2-dimensionale balkelementen B2.EP en B2.EP+ zijn gebaseerd op ar-
tikelen van Eriksson en Pacoste [5, 6]. De rek en de buiging is gebaseerd op
een model van Reissner. Het gedrag van dit type balk in het na knik gebied is
nog steeds correct, in tegenstelling tot de balken die uitgaan van de klassieke
Lagrange-Green rek formulering. Tevens is de Bernoulli hypothese toegepast.
Dit betekent dat zuivere afschuif vervorming niet meer mogelijk is maar dat deze
wordt omgezet in buiging. Door het ontbreken van uit het vlak verplaatsingen
en de daarbij behorende 3 dimensionale rotaties is de theoretische achtergrond
van deze balken tamelijk eenvoudig. De 2-dimensionale balken vormen dan ook
een goed uitgangspunt voor de volledige 3-dimensionale balk.

Het 3-dimensionale balk element B2.NL is gebaseerd op artikelen van Simo
c.s. [29, 30]. Dit element is een zogenaamd eindige rotaties element. Het niet-
lineaire gedrag van dit element is ook bij zeer grote rotaties correct. Het ele-
ment kan daarom in principe worden toegevoegd aan de familie van elementen
waartoe ook G. Rebel’s schaal elementen behoren [23]. De beschrijving van de
rotatie is gebaseerd op de klassieke formulering zoals die is voorgesteld door
Rodrigues [2]. Net als bij de 2-dimensionale balken is er gebruik gemaakt van
Reissner’s beschrijving van de rek. De Bernoulli hypothese is niet toegepast.
Op het moment zijn alle materiaal eigenschappen van het materiaal lineair eles-
tisch.

In tegenstelling tot het 2-dimensionale balkelement werkt het 3-dimensionale
balkelement nog niet in het niet-lineaire geval. Dit kan twee oorzaken hebben.
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Er kan een locking probleem zijn dat niet met de methode van gereduceerde
numerieke integratie opgelost kan worden. Het kan ook zijn dat de beschrijving
van de 3-dimensionale rotatie tensor niet geheel correct is.

Alle balkelementen hebben dezelfde formulering voor de massa matrix. Hierin
is de totale massa verdeeld over de beide knooppunten. De traagheidstermen
(de massa in de rotatie vrijheidsgraden) zijn verwaarloosd. Dit sterk vereen-
voudigde massa model blijkt echter zeer effectief bij transiente analyses.

De impliciete, transiente processor B2TRANS is gebaseerd op de B2IDTI pro-
cessor van K. Yildirim [34]. De basis van deze processor wordt gevormd door
een speciale groep implicite tijdsintegratie methoden, de lineaire meer stappen
(LMS) methode. Met behulp van het algoritme van Jensen [13] wordt het stel-
sel tweede orde differentiaal vergelijkingen omgezet in een stelsel eerste orde
vergelijkingen. Met de methode van Park [7, 20, 21] worden deze differentiaal
vergelijkingen getransformeerd naar een niet-lineair stelsel, dat wordt opgelost
met de Newton-Raphson methode.

Simulatie van mode-jumping verschijnselen is veel beschreven door Riks
c.s. [26, 27, 28]. Zijn methode is erop gericht om zo snel en zo nauwkeurig mo-
gelijk het verschijnsel te simuleren. Dit betekent dat het stabiele vervormings
gedrag, tot aan het knik punt, met de gebruikelijke Riks’ padvolg methode
wordt berekend [25]. Zodra het statische evenwicht instabiel wordt (wanneer
de stijtheidsmatrix singulier is), wordt er overgegaan op de transiente oplosme-
thode. De belasting wordt verhoogd tot boven de limietwaarde en de constructie
wordt losgelaten. Omdat bij deze belasting het evenwicht instabiel is, zal de
constructie zich met grote snelheid verwijderen van dit evenwicht en tot rust
komen op een ander stabiel pad met een ander vervormingspatroon. Dit type
berekeningen vereist een aantal aanpassingen in zowel de padvolgmethode (con-
tinuatie routine) B2CONT als de transiente processor B2TRANS. Behalve met de
balkelementen is het ook mogelijk om mode-jump analyses uit te voeren op
schaalconstructies met Rebel’s eindige rotatie schaalelementen.

Met behulp van een aantal numerieke voorbeelden is tenslotte de werking
van de balkelementen en de transiente oplosmethode uitgebreid getest. Een
aantal voorbeelden heeft betrekking op het mode-jumping verschijnsel. Uit deze
voorbeelden blijkt dat alle nieuwe toevoegingen, het 3-dimensionale balkelement
uitgezonderd, naar behoren werken. Ook de mode-jump analyses kunnen nu
worden uitgevoerd, op zowel de 2-dimensionalebalk elementen als de eindige
rotatie schaalelementen.

In de nabije toekomst zullen eerst de problemen met het 3-dimensionale niet-
lineaire balkelement opgelost moeten worden. Omdat het element in het lineare
geval werkt zal het slechts om een kleine aanpassing gaan. Daarna kunnen er
andere zaken verbeterd worden. Het balk element kan worden uitgerust met
een plasiticiteits model. Het LMS algoritme achter de transiente processor
moet zodanig worden aangepast dat het ook voor grote rotaties nauwkeurige
resultaten levert. Hierbij moet ook gekeken worden naar de mogelijkheden van
een niet-lineare beschrijving van de massa matrix. De verbeterde elementen
en de transiente processor kunnen worden ingezet bij het verdere onderzoek
naar mode-jumping. Vooral de invloed van beginvoorwaarden en dempings
constanten moeten hierbij beschouwd worden.
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Introduction

Simulation of nonlinear phenomena, such as buckling, post-buckling behavior,
dynamic buckling and mode-jumping problems are an important field in com-
putational mechanics nowadays. The finite element method (or FEM in short)
is frequently used to simulate these nonlinear problems.

The main idea behind the finite element method is the division of a structure
into a number of small, but finite elements, of which the mechanical properties
can be derived analytically. This division is often called discretization of the
structure. Due to this discretization, the mechanical behavior of the structure
can be described by a system of equations. The number of equations in this
system (or so-called degrees of freedom) is proportional to the number of ele-
ments that is used in the discrete model. In very accurate models the number
of degrees of freedom can exceed 100,000.

A system of equations of this size cannot be calculated by hand. It is there-
fore not surprising that the first serious applications arose together with the
arrival of computer technology in the mid fifties. These computer programs
were designed by NASA and were used in research projects. The first com-
mercial platforms arose around 1970. In the years after, these platforms were
further developed in order to satisfy specific needs. Nowadays, a large num-
ber of different programs is available. Some of them can be used for designing
purposes in combination with CAD systems, like MSC NASTRAN, other ones are
intended for analysis or scientific research, e.g. B2000 and STAGS.

The finite element method is a classical example of an engineering method.
It is rather simple and straightforward and does not require mathematical skills
of the user. At the moment it is the most widely used method in computational
mechanics. Also in thermodynamics and acoustics it has become the leading
calculation method. Strangely enough, finite element applications penetrated
other fields of physics more slowly. For example in fluid dynamics, the finite
difference method is still preferred to the finite element method.
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1.1 The B2000 Platform

The B2000 finite element package has been developed in the mid eighties by
S. Merazzi and P. Stehlin. They developed B2000 using their experiences with
other programs they previously worked with. All these programs had the un-
pleasant circumstance that they could not be manipulated at all. The imple-
mentation of new elements or solving methods was impossible.

To overcome these problems, the B2000 package is not placed in a rigid
format. It is modular, hardware independent and most important it can be
customized by the user to serve its specific needs. New solution techniques as
well as element descriptions can be implemented in the platform rather easily
using the B2000 building blocks. The presence of an independent database
manager, post-process utilities and a robust equation solver have even lead to
the development of FEM related packages like the explicit B2ETA solver and the
optimization platform B20PT.

Because of these properties, the platform is mainly used in a research envi-
ronment. B2000 is used as a testbed at a number of universities and aeronautical
institutes in western Europe. Approximately 30 people, among them a number
of students, are improving and adding new features to the package.

1.1.1 The Processors

The actual building blocks of B2000 are the processors, which are able to per-
form all necessary operations in finite element calculations. For example, there
is a processor that solves systems of equations by an LDL decomposition (B2ES),
there are also processors that assemble the stiffness matrix of a structure (B2EP
and B2EPN).

Macroprocessors are integrated sets of algorithms built with the processors
mentioned above. They can be used independently within the B2000 platform.
A very important and indispensable macro-processor is the input processor
B2IP. It translates the ascii text input file into the archival database which
is written in a standard B2000 file format. Every analysis must be started
with a B2IP session. The obtained database is used by the analysis macro
processors, that perform the actual computations, for example B2CONT. This
macro processor is designed for nonlinear analysis based on Riks’ path-following
technique.

1.1.2 The Elements

A variety of elements has already been implemented in the package and their
number is still increasing. Besides the traditional elasticity elements (beam,
shell and volume elements), acoustic and heat transfer (Laplace-type) elements
are available as well. Some of the elasticity elements are equipped with plasticity
or crack models.

A new generation of elasticity elements is currently under development by
G. Rebel [23]. These finite rotation shell elements are capable of handling
large strains and rotations and are the first ones that deal with the problems
concerning the so-called drill stiffness.
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1.1.3 The MEMCOM data base manager

All data produced by the B2000 platform is managed by MEMCOM [18], an in-
dependent database manager, developed by S. Merazzi. The data is stored in
a binary format, instead of ascii text. The biggest advantage of this binary
format is that it is much more compact than ascii and less sensitive for I/O
errors.

All MEMCOM operations, e.g. read and right tasks, can be controlled in the
B2000 source code by using ordinary C or Fortran subroutine calls. Within the
database, all data is organized in folders, the datasets. The B2000 package uses
a hierarchical notation method. For example, the displacements in the 6 time
step are stored in the dataset,

DISP.GLOB.6

where DISP is the name of the data set. The second entry is reserved for the
name of the coordinate system in which the data is expressed, in this case a
global coordinate system. The last entry in this example represents the cy-
cle number. Additional information to a certain dataset can be stored in a
description table.

Besides the standard read and write functions, MEMCOM can also be used to
manipulate data in the database. For example, when two datasets need to be
summed, it is not necessary to read both datasets, add them and write the
result back to the database. The summation can be done within the database
itself.

Since all data is stored in a binary format, it is not possible to view the
contents of the database by using an ordinary text-editor. An additional pro-
gram that can be used to look in the database is the monitor program or its
graphical version Xmon. These programs can also be used to manipulate the
datasets.

1.1.4 Post Processing

The results in the database can be presented in a graphical lay-out using the
post-processing programs B2BASPL and B2XY. The B2BASPL program visualizes
all possible results (e.g. deformations and stresses) by means of various tech-
niques such as colored contour plots. The package is optimized for high perfor-
mance graphic workstations, like Silicon Graphics systems. History functions
or xy plots can be made with the B2XY package.

It is of course possible for the user to write his own post-processing program
within the B2000 environment. Data from the database can be read using
MEMCOM commands and written in a different format. In this report, the data is
obtained from the computational database with a new macroprocessor B2GNU.
The gnuplot package is used to plot the results.

1.2 Current Developments in B2000

As said before, the B2000 package is mainly used in a research environment.
As a result of this, the package is always under development and new features
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are added continuously. In the last years the number of institutes participating
in the B2000 project has increased rapidly.

At SMR, a consulting company founded by S. Merazzi and P. Stehlin, all
developments on B2000 are gathered for further distribution. Furthermore, the
MEMCOM package as well as B2BASPL is under development at this company. The
National Aerospace Laboratory (NLR) coordinates development on the package
in the Netherlands and collaborates with both Universities in Delft and Twente.
The optimization routine B20PT is created here as well as the macro-processor
B2TEST. This last package can be used to validate new versions of the B2000
package. Germany’s national aerospace research center (DLR) uses B2000 as a
platform to do their research of thermal analyses.

At the Ecole Polytechnique Fédérale de Lausanne, optimization and par-
allelization of the B2000 source code is one of the main topics. Currently,
a parallel version of the explicit time integration method B2ETA is under de-
velopment. The University of Twente uses the package for their work in the
field of acoustics. A number of acoustic and viscous elements are developed in
cooperation with the NLR. At the faculty of Aerospace Engineering in Delft
the developments are mainly focussed on nonlinear structural analysis such as
buckling behavior, plasticity models and crack propagation.

1.3 Research Objectives

The main objective of this research is the simulation of mode jumps in beam
structures. This requires two new numerical models. First an appropriate non-
linear beam element must be derived. This involves the derivation of a residual
(internal) forces vector and a stiffness matrix. Since mode jumps are transient
(dynamic) processes a mass matrix must be derived as well. Second, in order
to calculate the actual jump, a time integration method must be chosen. Since
for the calculation of modejumps also quasi-static calculations are required,
this method must be based on the same numerical principles as the continua-
tion routine. This implies that the time integration method (transient method)
must be an implicit method.

Both the beam elements and the time integration method will be imple-
mented in the B2000 package. In order to improve the suitability, the new
features in B2000 must be widely applicable within the package. This means
that the beam elements, as well as the transient processor must also be available
for other analyses.

After all, this study covers two extreme regions of computational mechanics.
The development of the beam elements is mainly based on mechanical and
material principles as opposed to the more mathematical founded transient
method. Because of this, this report also provides a good survey of the different
aspects of finite element calculations.
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1.4 Overview of the Thesis

The thesis can be divided into 2 main parts. In the first part the development of
the beam elements is discussed. In chapter 2 two 2-dimensional beam elements
are derived. Both beams are based on papers by Eriksson and Pacoste [5, 6]. In
chapter 3 the two dimensional beam element is extended to a full 3-dimensional
beam element. The kinematics of this beam, as well as the numerical implemen-
tation is based on the work of Simo and VuQuoc [29, 30]. In the second part
solution techniques to solve the mode-jumping process are described. Chapter
4 discusses the transient time integration method [13, 21] and the development
of the B2000 macroprocessor B2TRANS. In chapter 5 the techniques to calculate
mode-jumps are proposed.

Numerical examples to illustrate the capacities of the beam elements and the
transient processor B2TRANS are given in chapter 6. The numerical examples are
compared to analytical solutions, results obtained from literature or other finite
element packages. The conclusions and recommendations are given in chapter
7. The appendices are reserved for additional information about the developed
programs. Appendix A contains a user manual for the transient processor. A
short outline of the syntaxis of the source code of B2TRANS is given in B. Finally
a list of all created and modified Fortran source files is printed in appendix C.

Throughout this thesis, a consistent notation is used in order to make a dis-
tinction between scalars, vectors and matrices. All scalars are written in thin
letters, the vectors are denoted by small bold letters, matrices are in bold capi-
tals. These conventions also holds for vectors and tensors that are prescribed on
the SO(3) space which will be discussed in chapter 3: Skew-symmetric tensors
are written in bold capitals, their axial vectors in bold small letters.
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A 2-dimensional beam

In the development of a fully nonlinear, 3-dimensional beam, the 2-dimensional
beam is a good starting point. Because of the small number of degrees of
freedom (six, i.e. three per node) and the fact that there are no zero-energy
modes (like for example in cable or rod type elements), this beam model is
rather straightforward. Complications due to the description of 3-dimensional
finite rotations of the beam do not appear either.

However, strictly speaking, the 2-dimensional beam is just of academic in-
terest. It is obvious that it is not possible to use it in ordinary 3-dimensional
structures. Nevertheless, due to its surveyability, the 2-dimensional beam model
is often used to test new finite element solution techniques. For example, the
new implicit time integration method B2TRANS, which will be discussed in chap-
ter 4, is tested for its reliability with this element. Also literature provides a
large amount of examples and ‘bench mark tests’ of nonlinear finite element
calculations with plane beam structures.

The beam elements described in this chapter are finite strain beam models
introduced by Reissner and further worked out by Eriksson and Pacoste [5, 6].
At this moment, these elements are considered as quasi-static beams. This
means that there is no representation for the mass derived yet. In a later stage,
when the time integration method will be discussed, a proper formulation for
the mass will be added.

The beams are assumed to be slender. This means that, compared to their
length, the radius of gyration, r = y/I/A is very small, r/L << 1. Furthermore,
the beam is made of an isotropic linear elastic material. This implies that
Young’s modulus £ is constant for all deformations and that there are no cross
coupling terms between the various deformation modes.
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Figure 2.1: Geometrical conventions for the 2-dimensional beam

2.1 Kinematic Model

Since the beam is assumed to be slender, it can be considered as a one dimen-
sional object in a 2-dimensional space. All variables of the beam are expressed
in terms of the beam mid axis, along which the arclength parameter s is de-
fined, s € [0, L] where L is the length of the beam. Note that in a deformed
configuration this beam mid axis, the dash-dotted line in figure (2.1), can be
curved.

In each point of the beam mid axis, a typical cross section is defined, denoted
by the dashed line in the figure. In undeformed position, the cross section is
perpendicular to the beam axis. There are two orthonormal vectors attached to
this typical cross section, ti(s;¢) and to(s;t), both a function of the arclength
s and time t € RT. The vector ti(s;t) is always perpendicular to the cross
section. In the undeformed state, the direction of these vectors is equal to the
direction of the element local base vectors e; and es.

tl(s; 0) = €1, tQ(S; 0) = €9 (2.1)

The vector t1 need not be tangential to the beam axis in deformed position. In
the sequel, the time parameter ¢ will be omitted.

2.1.1 Deformations

The deformation of the beam is fully described when the position of the beam
axis and the rotation of the cross section are known as a function of the arclength
s. The position of the beam axis in the 2-dimensional space is denoted by
the vector r(s), as shown in figure (2.2). The orientation of the typical cross
section (the vectors t1(s) and to(s)) is described by the angle 6(s). The set of
possible deformed configurations ¢(s) = (r(s),#(s)) of the 2-dimensional beam
is denoted by

Cyp = {¢ = (r,0)|r: (0,L) - R%,0:(0,L) —» R} (2.2)
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Figure 2.2: Description of the displacements for the 2-dimensional beam

In this case, it is possible to express the vector r in terms of its vector com-
ponents with respect to the fixed base e;, according to the deformations in the
figure.

r=[s+u(s)ler + w(s)ex (2.3)

The direction of the coordinate axes attached to the cross-section can be ex-
pressed in terms of 6(s).

t1(s) = cosf(s)e; + sinf(s)ez (2.4)
ta(s) = —sinf(s)e; + cosO(s)es (2.5)

Both t1(s) and t2(s) remain orthonormal.

2.1.2 Strain and Curvature

In order to describe the strains in the beam, the strain model as proposed by
Reissner is chosen. The strains are first defined in the moving frame.

r' = (1+ )ty + 7to (2.6)

where € is the normal strain and 7 is the shear strain. The operator ( ) is
the derivation of the vector with respect to the arc-length parameter d%. The
curvature & is by definition equal to the derivative of the rotation of the cross

section.
k=40 (2.7)

The rotation # and the curvature x are invariant of the coordinate system. This
can be seen as follows. The rotation is defined around a fictitious out-of-plane
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vector, say t3, perpendicular to both t; and ts. However, since all deformations
of the beam are defined in a 2-dimensional space, the direction of this fictitious
vector does not change at all. In other words the identity t3(s;t) = t3(s;0) = e3
holds for all s € [0, L] and ¢ € RT. All variables in this direction are therefore
invariant.

The expressions for € and -y can be found by taking the derivative of equation
(2.3) and rewriting the result in terms of the moving frame t;

L) [ cos 0 ] o [Sme] _ [1 —i—e] 2.9

—sinf cos 6 0

After regrouping the terms of this equation, the strain and curvature can be
written as follows

e=(1+u")cosf +w'sinh — 1
v =w"cosf — (14 u)sinf (2.9)

k=26

2.1.3 Bernoulli Hypothesis

In order to avoid shear-locking problems it is convenient to apply the Bernoulli
hypothesis. The beam model becomes much simpler by assuming that the
derivative of the position vector r’ is in all cases tangential to the director t;
that is attached to the cross-section of the beam, i.e.

r'=(1+e)t (2.10)

This implies that the mid axis of the beam will always be perpendicular to the
cross-section. As a result of this the shear strain is always equal to zero, v = 0.
Rewriting equation (2.10)

[1+u'

]l

sin 6 (2.11)
This equation gives the following two, independent expressions for the axial
strain €

1

1
€= (l—l—u'—cose)w; €= (w'—sint?)sim9 (2.12)

The curvature x remains unchanged.

2.1.4 Timoshenko Beam

The curvature of the beam is represented by the derivation of the rotation of
the cross-section. This is a quite good approach of the curvature. However, an
exact model has been presented by Timoshenko [9]. He assumed the curvature
to be the inverse of the radius of curvature of the beam.

1 o'

K’T:_

R ']

(2.13)
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1/2

where ||r'|] is the eucledian norm of the strain vector: (r'-r')!/#. Evaluation of

this expression yields

0’ cos 8
1+

Kp = (2.14)

2.2 Mechanical Model

Next, the kinematical behavior must be translated into mechanical behavior.
First, the constitutive relations must be derived. Then, the strain energy can
be calculated.

2.2.1 Constitutive Relations

The beam can be deformed in two ways. It can be enlarged (axial strain)
and it can be bent (curvature). Since the beam is presumed to be made of a
linear elastic material, there are no cross-coupling effects between these modes.
This implies that the constitutive relations or stress-strain relations are rather
simple. In a matrix formulation, they can be written as

=[5 2] L] o

where N and M are the internal axial force and bending moment respectively;
E is the Young’s modulus!. A is of course the beam’s cross section and I the
moment of inertia. Although the deformation of the beam is described in a 2-
dimensional space, both A and I are ‘ordinary’ 3-dimensional quantities. The
dimension of A is [mm?] and I is [mm?].

2.2.2 Internal Energy

The strain energy (or elastic energy) is the mechanical energy stored in a de-
formed structure. When the strains remain within the elastic boundaries of
the material, which is always the case since a linear elastic constitutive model
is assumed, the strain energy is equal to the work done by the external forces
during their application. When the structure is not loaded (or undeformed) the
strain energy is equal to zero.

The strain energy ¥ of the beam, as a function of the two deformation
modes, can be written as

L
1
V=g /EA62 + Elx*ds (2.16)
0

!Note that both the Poisson’s ratio v and the shear modulus G are not present in this
equation. This is of course a result of the Bernoulli hypothesis
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Substituting the axial strain and curvature equations gives the following two
integral equations:

L
o 1 ! 2 1 N2
U= 5 /EA(l +u —cosb) g + EI(0)°ds (2.17a)
0
17 1 0’ cos 6 2
B 9 cos
0

It is obvious that these expressions are not useful in practice, since for angles
0 = (2k + 1)m, k € Z the axial strain terms become singular. The alternative
formula € = (w' — sin0) sixlla can neither be used for the same reason. It is nec-
essary to derive a new expression for the axial strain using the two equivalent

relations, as derived in equation (2.12).

In the energy equation, the axial strain just appears as a squared.

2 ! 2
=(1 —cosf 2.18
€ =(14+u —cosb) p—y (2.18)
The square of the alternative formulation yields
€2 = (w' — sinf)? (2.19)

sin’ @
By using the identity cos?# -+ sin? # = 1, this last equation can be written as
1

e = (w — sinﬂ)Qm (2.20)
Regrouping yields

€ — €2 cos?f = (w' —sinh)? (2.21)
From equation (2.18) it can be seen that

e?cos? 0 = (1 +u' — cos9)? (2.22)

Substituting (2.22) into (2.21) gives the following expression for the square axial
strain:

€2 = (14 u' —cosf)? + (1 —sinf)? (2.23)

At this point the internal energy equation for both the simplified and the Tim-
oshenko beam can be formed?.

L
1
U= /EA[(I +u' —cos0)? + (1 —sinh)?) + EI(0')%ds (2.24a)
0

0’ cos b

)2
ds
!
1+u (2.24b)

L
v, = %/EA[(l +ul = cos0)? + (1 — sin®)?] + BI <
0

%In literature, the Bernoulli axial strain is sometimes. wrongly, divided into a pure strain
part and a ‘pseudo shear strain’ part, according to ¢ = € + 77, where €2 = (1 + v’ — cos#§)?
and 72 = (1 —sin#)?. The elastic energy is than written as ¥ = fOL EA& + EA7® + EIx’ds.
It need no discussion that this notation is incorrect and confusing.
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Figure 2.3: Finite element representation of the 2 node, 2-dimensional beam
element

2.3 Finite Element Description

Both beam descriptions will be implemented as a 2 node beam element. Since
the beam is defined in a 2-dimensional space, each node has 3 degrees of freedom
(d.o.f.’s); two translations, u; and wy in the E;- and Eg-direction resp. and
one rotation, f;7. The subscript I denotes the node number (I = 1,2) as can be
seen in figure 2.3.

2.3.1 Interpolation functions

Normally, linear interpolation functions are used to describe the relation be-
tween the displacements of the nodes and the displacements in an arbitrary
point on the beam’s mid axis. In this case a method introduced by Antman [5]
is used instead. Antman proposed a set of 4 parameters dj ...ds which are
functions of the nodal displacements and rotations

wy — W1 0, — 0,
dy = arctan | —2— "+ ). dy = : 2.25
1 arcan<L+u2_u1>, 2 5 ( )
91+02 U9 — U1
do — —d dy = 2" 2.2
3 2 L 1 L (2.26)

Note that Antman’s alternative deformation parameters are based on linear
extrapolation functions. The derivative of the axial displacement u' can be
expressed in terms of these parameters.

u' =dy (2.27)

Since the kinematics of the beams are based on the Bernoulli hypothesis the
lateral displacement w can be written as a function of the axial displacement
using the 2 expressions for axial strain, equation (2.12).

w = (1+u')tan6 (2.28)
In terms of Antman’s parameters,

w' = (1+dy)tand; (2.29)
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Figure 2.4: Deformed finite element model of a 2-dimensional beam

For reasons of simplicity, the rotation of the beam’s cross section 6 can be
divided into a rigid rotation part 6, and an elastic rotation part 6., according
to

0 =0, +0, (2.30)

The rigid rotation actually describes the position of the beam in the element
local coordinate frame E;, i.e. the angle of a fictitious line between the 2 nodes
and the original position of the beam. The 6, term is the rotation of the
mid surface compared to this fictitious line, figure 2.4. In terms of Antman’s
parameters, these rotation can be written as.

2
0, = dy; 0, = (1 - z%) dy + <1 - 6% + 6%) ds (2.31)

The curvature 6’ can be found by derivation of the expression for # with respect
to the arclength parameter.

2 6 12s
0 = —ZdQ + <_Z + ﬁ> ds (2.32)

All displacements, the rotation and their derivatives can be filled in the energy
equation. When this is done, it will appear that there are some severe problems
caused by membrane locking.

2.3.2 Membrane Locking

A very severe kind of problems in finite element development are locking prob-
lems. In principle, beam elements can suffer from two of these problems, shear
locking and membrane locking. Since the current beam model have been de-
rived using the Bernoulli hypothesis, the shear mode is neglected. Shear locking
is therefore not possible. The other type, membrane locking can still occur. In
order to explain this problem, a definition by Ibrahimbegovié¢ and Frey [12] is
used.

The membrane locking phenomenon stems from the inability to capture a
state of pure bending inextensional deformation. In an equation form, the beam
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Figure 2.5: Curved 2 node beam element

is unable to bend while
e(s) =0; Vs (2.33)

As opposed to the shear locking problem, which will be discussed in the next
chapter, the membrane locking problem only occurs when the beam is already
bent. In this case the angle that describes the rotation is no longer equal to 0.
For the undeformed beam 6 = 0, the strain is equal to

e=u (2.34)
When the beam is slightly curved, the membrane strain can be written as
e=u +0f (2.35)

Note that the term sin 6 is replaced by 6 which is valid for small rotations. The
geometry of the curved beam is denoted by the term f’. As can be seen in
figure 2.5, this parameter can be written as
df a
= No(s)a: - = 2.36
f 2( ) ) f ds L ( )
The discrete approximation of the axial strain for a curved beam becomes

1 a

EZ—(Ug—ul)—l—ﬁ

a
I (91 + 92) + Sﬁ(eg - 91) (237)

The only way to bend the beam while the axial strain remains 0 is when 6; = 65
is equal to zero. This means that the beam is not curved.

There are many methods to solve this problem. Most of them assume
that the beam is integrated numerically, for example using a Gauss integra-
tion method. Since this beam will be integrated analytically, other techniques
must be found. The rotation of the beam 6 can said to be a linear extrapo-
lation. By taking the average of the rotation, in principle the rotation of the
beam in the mid point at s = %L is calculated. Replacing the rotation terms
by the average rotation 6,, gives the following equation

af,,
L

1
€= —(UQ—’U,l)-i-

7 (2.38)

It can be seen that it is now possible to bend the beam, while the axial strain
remains equal to 0.
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The average of an arbitrary function f(s) in a certain domain s € [0, L] can
be calculated as follows

L
1
for = E/f(s)ds (2.39)
0

In the energy equations, 6 always appears as a trigonometric function, i.e. cos@
or sinf. The averages of these functions are

L
1
cosf,, = I /COS Ods (2.40)
0
. L
sinf,, = 17 /sin@ds (2.41)

0

Remember that 6 is constructed from a rigid component 8, and an elastic
component 6.

In order to reduce the amount of calculations, a first simplification must
be made. It can be assumed that the elastic rotation of the beam remains
considerable small, 8. < 0.1 rad. The trigonometric functions of the elastic
rotations can then be represented as a Taylor expansion series.

cos(fe) =1 — %02 +HO.T.
sin(fe) =0, + H.O.T.

(2.42)

With the use of some manipulation functions, the average of the total rotation
0 =60, + 0, can be written as

L L
1 1 . Lo
Z/costs = Z/[COSOT — 0, sinf, — 598 cos O, ]ds (2.43)
0 0
L L
l/cost —l/[s' 0, + 6, cos 6. —1928' 0,]d (2.44)
I s =7 [ [sinb: +0 r = 5 sinb;]ds .
0 0

Substituting of equations (2.31) and integrating the result yields:

L
1 1 1
I /cos Ods = cosd;[1 — Ed% - 1—0d§] (2.45)
0
L
1 /cosad = sind; [l — Ly id2] (2.46)
L S = S1n 1 6 92 10 3 .
0
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These average rotation terms can be inserted in the strain energy equations,
which can be integrated afterwards. Due to the simplicity of the formulations,
this can be done by hand, or with the help of an external mathematical manip-
ulation program such as MAPLE V2. The integrated strain energies are

EAL 1 1 2
G = [1 + d4 — cosd, (1 — Ed% — 1—0d§>] +
EAL 1 1 2
- [(1 +dy) tand; — sind; (1 — 5B - Ed%)] + (247)
2F1
T(dg + 3d3)
and
EAL 1 1 2
WUy = [1 + dy — cos d; (1 — Ed% — 1—0d§>] +
EAL 1 1 2
— [(1 +dy)tand; — sind, (1 — Ed% — Ed%)] + (2.48)
2ET | cos® di(d3 + 3d3)(1 — td3 — 5d3)?
L (14 dy)?

2.3.3 First and Second Variation

This expression can be used to obtain a relation between internal forces and
displacements. Suppose that the strain energy of a structure is presented as
a function of a single deformation u. It has been proven by Castigliano that
the corresponding force F', needed for this deformation can be calculated by
differentiating the strain energy equation with respect to w.

_ 0Y(u)

F= 2.4
5 (2.49)

The stiffness k£ of the structure with respect to this deformation is equal to the
derivative of the force F' with respect to u

_OF

b= 5

(2.50)

The stiffness can be deduced from the strain energy equation directly by com-
bining equations (2.49) and (2.50), yielding
0P
~ Oudu

(2.51)

As a result of the finite element discretization, the internal energy of the beam
is expressed in terms of 4 variables, Antman’s alternative parameters, which
are just a function of the 6 nodal displacements and rotations. It is therefore
possible to use Castigliano’s theorems to determine the internal forces vector
and the stiffness matrix.
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For reasons of surveyability, the 6 nodal displacements and rotations uy,

wy and @ are replaced by the vector q = [q1,¢qo,... ,qs)'. According to Cas-
tigliano’s theorem, the internal forces vector can be calculated as follows.
; ov
'mt,e - 252
=g (252

Since the energy is expressed in terms of the alternative Antman parameters
d;, the chain rule must be used.

. ov 0V 0d;
'mt,e — — J 253
I dq;  0d; 9g; (2:53)
Introducing a 4 x 6 transformation matrix A, which is defined as
. od;
A = 2.54
5= 5 (2.549)

When the first variation of the strain energy in terms of the Antman parameters

% is written as f?, the correct first variation vector is equal to

fint,e — Afa (255)

The stiffness matrix of the element (K¢) is the second variation of the strain en-
ergy. It can be calculated by differentiating the expression for the first variation
with respect to q

0 [«
K= (Af) 2.56
o (2.56)
This can be written as
A . Ofe
K, =—f}+A;—~ 2.57
1] 8(]]‘ 7 J 8(]]' ( )
When the chain rule is applied, this equation can be written as
K® = A'K*A + f;AM 1 f2AQ) 4 f2AB) 4 2 AW (2.58)
Where K* is the stiffness matrix in terms of Antman’s parameters
ov
K2 = —— 2.59
Y 9d;0d,; ( )
and A®) a transformation matrix.
2 ra
i _ S
) — 2.60
iJ 8(]z'8q]' ( )

Since both A® and A® are equal to 0 the complete equation for the 6 x 6
second variation matrix yields

K= A'K*A + f;AMD 1 f2AG) (2.61)

The differentiations and the construction of the transformation matrices are
rather straightforward. They can be done by hand, or with help of the mathe-
matics manipulation program MAPLE V2.
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2.4 Numerical Aspects

The B2000 package is designed to analyze 3-dimensional structures. The imple-
mentation of the 2-dimensional beam elements in this environment will cause
some problems. In principle, it is possible to use these elements in ordinary 3-
dimensional structures. With a correct choice of the transformation matrix the
local coordinate system of the 2-dimensional element can be placed arbitrarily
in the 3-dimensional space. From a geometrical point of view, this solution is
correct. However, the out-of-plane bending as well as the torsion of the beam
are not defined. In these directions the beam suffers from zero energy modes
(modes of which the stiffness of the beam is equal to zero). Locking of these
modes is the only way to prevent the stiffness matrix of the structure from
becoming singular.

The B2000 package has already taken into account these kind of prob-
lems. There is an option to choose the type of geometry. Apart from the
ordinary 3-dimensional coordinate system, a 2-dimensional (plane) and a quasi
2-dimensional space can be chosen as well. Unfortunately, these 2-dimensional
spaces are not implemented yet. This implies that at the moment, the element
cannot be used properly, unless the 2-dimensional space is implemented first.
Since these beam elements are just designed for scientific use, it is better to
think of a less radical solution.

The best idea is to use the element in a restricted ordinary 3-dimensional
space. The elements can only be placed in the zy plane. The z-coordinate is
always equal to zero. The displacements in the Z-direction as well as rotations
about the x and y-axis need to be locked. In this case it is still possible to
use the element in combination with ‘normal’ 3-dimensional elements, as long
as these out-of-plane d.o.f.’s are locked for all nodes. A disadvantage of this
solution is that it is easy to make mistakes.

From a programmers point of view, the internal forces vector and the stiff-
ness matrix are considered as 3-dimensional objects. The out-of-plane d.o.f.
rows and columns exist, but just contain zero values. This implies that the
length of the forces vector and stiffness matrix is 12 elements long. The user
will not notice this.

2.4.1 Transformation Matrix

The last step towards a workable finite element is the transformation of variables
from the element local coordinate system into the global coordinate systems3.

T — |: COS SlIlOé:| (262)

—sina  cos o

where « is the angle between the element local and the global coordinate system.
The terms cosa and sina can be calculated directly as can be seen in figure
2.6.
cosa = fw; sina = fy (2.63)
3In B2000 conventions the global coordinate system is often referred to as the branch global
coordinate system.
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Figure 2.6: Transformation from the element local to the global coordinate
system

In every analysis within the B2000 package, the displacements are calculated
and stored in terms of the branch global coordinate system. In the calculations
of the element local internal forces and stiffness matrices, these displacements
must be transformed into element local displacements first, using the transfor-
mation matrix [1].

u, = Tlug (2.64)

The transformation of the element local internal forces and stiffness matrices
must be transformed to the branch global coordinate system using equivalent
procedures.

fg’lt _ féntT Ko = TtKeT (2.65)

2.4.2 Implementation

As described above, the beams are implemented in the B2000 platform as ordi-
nary 3-dimensional elements. Since both beams are almost identical, they have
the same name, B2.EP. The model curvature description can be chosen using
the flag NG. When NG is set to 1, the simplified version of the element is used.
When NG is set to 2, the Timoshenko variant is chosen. In the sequel this par-
ticular variant will be denoted as B2.EP+. The users manual of the element can
be found in appendix A. An overview of the source code is given in appendix

C.



A 3-dimensional beam element

The 2-dimensional beam element developed in the previous section can be ex-
panded to a 3-dimensional element by adding out-of-plane deformations. This
will lead to a number of new difficulties, most of them concerning the kinematic
description of the large rotations. The addition of a completely new deformation
mode, the torsion, will also be considered.

Three dimensional beam elements in general are part of the so-called stan-
dard structural elements, which are essential to any finite element package.
Other members are the shell elements and the volume elements. In principle
any structure can be modeled with these elements. Apart from the typical beam
like structures (trusses and frames), beam elements can also be used to model
stiffeners and stringers on shells.

The aim is to develop a 3-dimensional beam element that, together with
Rebel’s shell elements [23] completes the family of nonlinear finite rotation ele-
ments in the B2000 package. Furthermore the beam must satisfy the demands
stated in chapter 2, i.e. a good behavior in the post buckling area. The devel-
opment is therefore completely based on proceedings by Simo et al. [29, 30].

3.1 Analytical Derivation

The mechanical properties of the beam are first derived analytically. The beam
is considered as a one dimensional element in a 3-dimensional space. First a
uniform way to describe the deformed position of the beam is regarded. Using
this kinematic description, the strains and curvature of the beam can be deter-
mined. The constitutive relations translates the strains to stress. Finally, the
derivation is completed with the formulation of the internal forces of the beam,
using the linear and moment balance equations.

3.1.1 Kinematic Description

The kinematic description of the 3-dimensional beam is adapted from the de-
scription in the previous section and extended with an additional ‘out-of-plane-
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Figure 3.1: Kinematic description of the 3-dimensional beam

axis’. Let t;(s,t)! represent the three orthonormal basis vectors of a moving
frame attached to a typical cross section, where s € [0,L] C R denotes the
curvilinear coordinate along the mid axis of the beam, and ¢t € Rt is a time
parameter. The vector t3(s) remains normal to the cross section at all times (in
the derivation of the 2-dimensional element this vector was called t;). The fixed
reference basis of the same section is denoted by E;(s), so that at time ¢ = 0
the following must hold: t;(s,0) = E;(s), for s € [0, L]. Since the undeformed
beam is straight, the orientation of fixed basis E; is constant along the beam’s
arclength s and equal to the orientation of the element local coordinate system,
€;.

The orientation of the moving frame can be expressed in terms of the fixed
frame using the orthogonal transformation tensor A(s,t) = A;;i(s,t)BE; @ E;
which is a function of both the position on the beam axis coordinate s and the
time ¢.

ti(s, 1) = A(s, )E; = Ayi(s, 1) E; (3.1)

The position of the centroid of the cross section (i.e., the origin of the moving
frame) is denoted with the vector r € R which is defined in the terms of the
fixed frame as follows:

r(s,t) =ri(s, t)E; (3.2)

Note that the position of a point on the nodal axis is expressed in terms of the
fixed reference frame (E;). Accordingly, the set Csp, of all possible configurations
of the beam is defined by

Csp ={¢ = (r,A)|r: (0,L) = R3> A :(0,L) = SO(3)} (3.3)

In the sequel all latin subscripts can obtain the value i = 1,2, 3. Furthermore, the Einstein
convention holds, unless indicated otherwise.
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Here, SO(3) is the special orthogonal (Lie) group. The transformation ten-
sor A is a pure rotation tensor and defined in the SO(3) space of orthogonal
transformations. This implies that the identity A - A = I must hold. In other
words, in a matrix notation, the transposed matrix is equal to the inverse matrix
(At =AY,

In the continuing, all variables are expressed in one of these two reference
frames. In principle, the complete derivation is done according to the fixed
frame, the so-called material description. However, some variables need to
be calculated in terms of the moving frame, the spatial description. Vectors
and matrices can always be transformed from one to another frame using the
identity (3.1).

3.1.2 Strain and Curvature

The strain is measured in the moving frame first. On the analogy of the
Eriksson-Pacoste beam, the 3-dimensional strain vector «y is defined as follows:

=——t 3.4
7=t (3.4)
Where v = [y1, 72, e]t. The first two terms denote shear strain in the t; and to
direction , the last term is the normal or axial strain. The strain vector can be
transformed to the material reference by using equation (3.1):

r=A"! (% — t3> (3.5)

Using the orthogonality condition of A, this equation can be rewritten as

 dr
T'=A I E; (3.6)
Due to the multiplication of the spatial strain vector by the rotation tensor A
the individual terms of the material strain tensor I' consist of both shear and
axial strain terms.

The curvature x in the 2-dimensional beam model was initially defined as
the derivative of the rotation € of the beam’s cross section with respect to the
arclength s, Kk = %. This definition can also be used for the derivation of the
curvature in the 3-dimensional beam. In terms of the spatial base t;(s) and the

rotation A(s) the curvature can be written as

(3.7)

The spatial curvature tensor Q(s) is a so-called skew symmetric tensor of the
following form

0 —ws3(s)  wa(s)
s) 0 —wi(s) (3.8)
—wso(s)  wi(s) 0
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Figure 3.2: Position vector x in an arbitrary body V'

It can be seen that the identity Q + Q! = 0 must hold. Sometimes it is more
convenient to use the associated axial vector of the tensor, denoted by the small
letter w. This vector is defined so that

Qa=wxa (3.9)

where a is an arbitrary vector. The axial vector consists of w = [w1,ws,ws]’.
The first two terms are the curvature of the beam around the t; and the to
direction respectively. The third term wjs is the torsional curvature.

The translation of the spatial curvature to the fixed frame requires the same
procedure as used above.

k(s) = Al(s)w(s) (3.10)

Here, k(s) is the axial vector of the skew-symmetric tensor K(s).

3.1.3 Balance Equations

The element local equilibriums of forces and accelerations are described in the
momentum balance equations, the balance of linear momentum and the bal-
ance of rotational momentum (or moment of momentum). Both equations
will be derived stepwise in a general form first towards the explicit form for
a 3-dimensional beam. The equations will be derived according to a spatial
reference, i.e. the fixed frame. The linear momentum of an arbitrary body B
is defined as

/ / / p(x; 1) %(x; t)dV (3.11)
J

where x(x;t) represents the velocity of an arbitrary particle with respect to a
fixed point with position vector (x;t) and where p(x;t) is the material density.
The rotational momentum of the body with respect to an arbitrary point xg
(in this case the origin of the fixed frame is chosen), is defined as

/ / / p(x; 1) x x % (x; £)dV (3.12)
J
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Apart from the momentum, there are external forces that work on the body.
They can be divided into body forces and contact forces, acting on the surface
of the body (9V). The applied body forces and moments can be described as
a function of the body force density b(x;t):

/ / / (5 £)b(3; £)dV (3.13)
/

The rotational balance in this case yields:

/ / / p(x: £) x X b(x; £)dV (3.14)
/

A well-known example of a body force is the gravity force. In that case, the
vector field b can be assumed to be constant over the body V. When the grav-
itational acceleration g acts in the negative z-direction (assuming a Cartesian
coordinate system), b can be described as b = [0,0, —g]’. A contact force does
not affect each point of the body: it only effects the boundary V. The linear
and rotational parts are

6/V / £(x, n; £)dA (3.15)
8/V / xxb(x, 1 £)dA (3.16)

The stress vector t is not only a function of place and time (x;t), it also depends
on the direction of the surface of the body (n). The momentum equations to-
gether with the applied forces and moments result in the balance of momentum
equations

/// (x:t)b xth+// (x.m,t)d
& s

/// xtxxbxth+//x><txnt
/// (3 ) % x (o 1)V

The Cauchy stress formulation will be used to describe the surface forces. The
stress vector t acts on the surface of the body in a point x € dV in the direction
n. Cauchy proposed a new stress tensor which is independent of the normal n.

(3.17)

(3.18)

t(x,n) = T(x)n (3.19)



44 3. A 3-DIMENSIONAL BEAM ELEMENT

The tensor T is called the Cauchy stress tensor. In a rectangular Cartesian
coordinate system, it can be decomposed as follows

T = Tijeiej (320)
and
ti = Tj;(x)n, (3.21)

The first component (e;) defines the direction of the force, the second one
(e;)) the direction of the normal. It can be shown by combining the linear
and rotation momentum balances, that the Cauchy stress tensor is symmetric,
T = T!. Substituting the Cauchy stress tensor into equations (3.17) and (3.18)
and using the divergence theorem, these equations can be written as

/V/ / p(x;t)b(x; t) + div[T(x; £)]dV = % /V/ / p(x; )% (x; £)dV .

and
/V// p(s: £) xx b(x: £) + div](x x T(x; £)]dV = %/V//xxx(x;t)dv(&%)

The beam element may be considered as a one dimensional element in a 3
dimensional space. Beam properties can therefore be assumed to be constant
over the beam cross-section. The divergence

=T
div[T] = %Tiz Summation over i = 1,2,3 (3.24)

can be written as (note that e3 will be considered as the arclength variable s)

A 9 T3
s =55 |13 (3.25)
133

For the same reasons, the integration space V can be replaced by Ads, where
A is the beam cross section. The balance equations can be written as

/ _g—’: + ﬁ] ds = / p(s;t) Afds (3.26)
B L

L

[Om  Or _ .
/ _E + s X n+ m] ds = / [PIw +w x (pIw)]ds (3.27)
L

where n and m are the internal forces and moments, the product of the internal
stresses and the beam cross section. In the right hand sides of this equation is I
the mass inertia tensor and w is a spin tensor, defined by Simo and VuQuoc [30].
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In this chapter, a closer look is taken at the internal forces of the beam.
The external (body) forces are of less importance. The dynamic (inertial) part
of these equations (the right-hand-sides) are omitted for the time being. The
same is done to the body forces that describe pre-stress, thermal expansion
etc. In later developments these terms can be evaluated and added to the finite
element definition of the beam.

on

i .2
s =0 (3.28)
om Or

E + % Xn= (329)

3.1.4 Constitutive Equations

The relation between strains and stresses are embedded in the constitutive equa-
tions, or the so-called stress strain equations. The beam considered so far is
isotropic and fully elastic. As a result of this, there are no coupling effects.
For example, a pure shear deformation has a pure shear force as a result. The
constitutive relations are regarded in the moving frame first. They can be
presented in the form of a matrix equation.

-]

where C is the 6 x 6 constitutive matrix and N and M are the forces and
moments in material notation. Since there is no coupling, the matrix C is a
diagonal matrix. The distribution of stresses caused by axial strain, bending
and torsion are linear over the beam cross section. The stresses as a result of the
shear strain are distributed nonlinearly over the cross section. The distribution
depends on the shape of the cross section as well.

Up to now, the complete derivation can be used for beams with an arbitrary
cross section. However, in order to describe the constitutive relations of shear
deformation, the shape of the cross section determines the stress distribution. In
this case, it is convenient to consider the most simple and common cross section,
a rectangular cross section. A method to determine the exact shear strain
relation for this shape can be found in Bathe, [1]. In this book, the constitutive
relation is presented as the ordinary linear relation GA (shear modulus and
area) with a correction factor k.

The shear strain energy W,,.. per unit length of the beam is defined as
follows.

1, 1 [V
\Ilshear_/ﬁTadA_/ﬁ (A—s> dAs (331)
A

8

where 7, is the actual shear stress, V' the total shearing force and A the relative
shear cross section area. Using k = A/A;, the equation can be written as

V2

k= ———
AfAngA

(3.32)
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For a rectangular cross section, the shear stress can be written as

_ 3V [(h/2)? —y?
T 24 [ (h/2)? ]

giving the correction factor £ = 5/6. Using the correction factor, the complete
constitutive relations for the rectangular beam in material description become

Ta

(3.33)

C = diag [gGA, ZGA, EA,Ely, EL,,GJ (3.34)

This material form of the constitutive matrix can be transformed to a spatial
base, according to

¢ = IICIr' (3.35)

where IT is a 6 X 6 transformation matrix assembled using the ‘ordinary’ trans-
formation matrix A.

m= [ﬁ 2] (3.36)

The same transformation can be executed for the forces and moments

-y

where n and m are the forces and moments in spatial description, which can
be substituted in the balance equations, (3.28) and (3.29).

3.2 Finite rotations

In a 3-dimensional configuration, the rotation space is a nonlinear manifold: the
rotation of a vector is a nonlinear operation and as a result of this subsequent
rotations cannot be added in a normal fashion. One of the manifestations of
these nonlinearities is shown in figure (3.3). The final orientation of the box is
determined by the order in which the three consecutive rotations are executed.

In many applications, for example older finite element descriptions, the
rotations are assumed to remain small (< 0.1 rad.). As a result of this the three-
dimensional rotations can then be expressed with a linear rotation tensor and
the current reference from (the coordinate system) need not be updated. The
beam element that will be derived in this chapter must be able to handle large
deformations. The linear rotation tensor cannot be used then. Furthermore the
reference frame must updated constantly.

In this section the rotation tensor for large rotations will be outlined ac-
cording to the conventional description for small rotations. A special attention
is paid to the Rodrigues rotation vector [3], which will be used in this specific
case.
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Figure 3.4: Small rotation in a 2-dimensional space

3.2.1 Small Rotations

Consider an arbitrary vector ry in the 2-dimensional space as shown in figure
(3.4) is rotated by an angle Af to become ri. The new vector r; can be written
as

cos(6 + AB)
r; = ||ro|| | sin(6 + AB) (3.38)
0

where ||rp|| is the length of the vector ro. Since the rotations remain small, this
equation can be simplified to:

r; =rp+ Ar = ||rg||(t + Afn) (3.39)

where t is a unit vector tangent to rp, n is a unit normal vector. In this
situation, n can be written in the following form

—sinf
n=| cosf (3.40)
0
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Note that the relation n - t is satisfied. In a tensor notation, equation (3.38)
can be written as

1 —A0 0
ry = A6 1 0 Iy (341)
0 0 1

This equation can be rewritten with a rotation tensor Ay,
1‘1 - AI‘Q; Alin. - I + ®2D (3.4:2)

where I is the unit tensor, I = diag[1,1, 1], and ® is the skew-symmetric spin-
tensor;

0 —-Af 0
®2D == AH 0 0 (3-43)
0 0 O

It need no proof that when this equation is extended for an arbitrary rotation
in a 3-dimensional space, this equation can be written as:

r; =rp+ Ar =1y + (A8 X rp) (3.44)

where A@ is the 3-dimensional rotation tensor. The spin-tensor @ = A@ can
be written in tensor notation.

0 —Af; Ab,
@=| A8 0 —Af (3.45)
A0 NG 0

Because of the simplifications made in this derivation, this linear rotation vector
cannot be used for large rotations. The equivalent of equation (3.44) will be
derived using Rodrigues formulation for large rotations.

3.2.2 Large Rotations

Assume that the rotation of an arbitrary vector rg to a new situation r; in-
volves the vector @ = [y, 62, 03]". This rotation is still an incremental rotation.
For reasons of convenience the A term has been omitted. This vector can be
decomposed into a unit vector e.

0 =|0|le (3.46)

where 6 is the length of the pseudo vector. Assume that the vector ry is rotated
around vector e over an angle ||@|| to the new direction r;, figure (3.5a). After
examining the rotation disc as shown in figure (3.5b) the following identity can
be seen:

Ar = Aa+ Ab (3.47)

where Ab is orthogonal to Aa. The length of vector Ab (||Ab||) can also be
derived form the figure;

| Ab|| = Rsin]|6]| (3.48)
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Figure 3.5: Three dimensional rotation (a) Detail (b)

The same can be done for Aa
||Aal| = R(1 — cos||0]]) (3.49)

Vector Ab is perpendicular to both rg and e. Its direction can be calculated
by the expression

b* =e xr (3.50)

Note that the length of b* is not equal to the length of b. Dividing equation
(3.50) by its own length ||b*|| and multiplying this with equation (3.48) gives

||Ab]] Rsin|[|6]]

Ab = m(e X o) = v o] (e X rp) (3.51)
Using the following relation

[le x rol| = [[rol| [le] sincx (3.52)
Since ||e|| =1 this can be written as

lle X ro|| = ||ro||sina = R (3.53)

Substituting this into equation (3.51) gives

sin ||6|

Ab = sin|[6]|(xo x ¢) = =g

(6 x 1) (3.54)

Next, Aa can be determined since this vector is orthogonal to both Ab and e.

Aa* =sin||@||(e x (e x rp)) (3.55)
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In a similar way as to Ab, vector Aa can be determined using equation (3.49)

Aa = %(9 % (8 x o)) (3.56)

The equations for Aa and Ab can now be substituted into equation (3.47).

ry = 1o+ Ar = 1o+ SO g o oy L2510 g o (6 x o))
o] TGk 3.57

The definition of the spin-tensor

0 x ry = Or (3.58)
holds so that the equation above can be written in a more general form.

r, = Arg (3.59)
where A is the yet defined rotation tensor.

A=I+ Siﬁyﬁ”@+ a _HC;)ﬁg”gH)@@ (3.60)

It is obvious that this expression is equal to the formula for the rotation tensor
in for small rotations (3.42) with an additional nonlinear term.

3.2.3 Rodrigues Formula

For a number of reasons, the formula for finite rotations in a 3-dimensional space
is often expressed in an alternative way. In this case an alternative expression
based on Rodrigues’ treatment is used. The incremental rotation @ can be
replaced by a so-called pseudo vector

_  tani||@]|
6=—2--"60 (3.61)
101]
Since the incremental rotation @ can be decomposed in a direction vector e and
its length, @ = ||@||e, the pseudo-vector can be written as
~ 1
0 = tan §||0||e (3.62)

After some manipulations, the rotation tensor A can be written as
A=T4—2 ((:)+(:)2) (3.63)
1+ 1]6]| '

Note that all trigonometric terms have disappeared in this expression.
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3.2.4 The Exponential Form

In equation (3.60) the rotation tensor is not just a function of the spin-tensor
®, but also of the expressions sinf and 1 —cos . Using a Taylor expansion for
these sine and cosine terms, it is possible to exclude them.

. 0| 0|)°
sin o] = o) - 19 O (3.64)
181 llell*

COS||0||:1_T+T_"' (3.64b)
Using the relationship

@ ! = (=) Yg|P" Ve (3.65a)

e = (-1)"'||g|*" Ve (3.65b)
the exponential form looks like

e? e

A:exp[G]:I+®+7+?+... (3.66)
The rotation tensor formulated in equation (3.63) can also be written in this
form

2 = | =2
A:exp[e]zl+7_(®+® ) (3.67)
1+ 1/6]]

This exponential notation can be very useful in the linearization process which
will be tackled in section 3.3.2. However, it should be mentioned that this
exponential formulation is just a symbolic notation. The rotation tensor cannot
be calculated by using this notation, for the simple reason that the exponent
of a tensor is not defined.

3.2.5 Compound Rotations

An already deformed beam element must be able to be deformed with a new,
incremental rotation. Since the rotation is described in a nonlinear space, these
compound rotations cannot be added in a traditional manner. The new incre-
mental rotations must be applied to the current rotation tensor. In this section
a formulation for compound rotations will be derivated. Consider a specific
initial rotation O

ry = A(01)r0 (368)

This rotation is followed by an incremental rotation @ = [0y, 02, 03] that rotates
the vector r; into a new state (r2) following

ro = A(02)r1 (369)

Substituting equation (3.68) gives the following relationship between the new
vector ry and the reference vector rg.

ro = A(02)A(01)ro (3.70)
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The operator in the equation above can be replaced by a new operator Ais.

Summarizing, the rotation of a vector ry to ro via the intermediate result r
involves two rotation tensors. In all cases the rotation pseudo-vectors @ and
0, must be translated into a rotation tensor A; = exp[®;] and Az = exp[Os]
respectively.

In the next chapter, the development of the transient processor, the concept
of compound rotations is also used. In that case however a slightly different
variant of the Rodrigues notation is used to describe the rotations. Doing so,
the compound rotation vector can be fully derived as a function of the two
rotation vectors, see section (4.6.3).

3.3 Internal Forces and Stiffness

The balance equations as derived in section 3.1.3 are used to determine the
internal forces vector of the beam?. The stiffness of the beam can be found by
taking the first derivative of the internal forces with respect to the displace-
ments and rotations. In this case, since the expression of the internal forces is
highly nonlinear, it will be done by linearization of the weak form of the bal-
ance equations. Before the balance equation can be linearized, an admissible
variation must be superposed to the current deformed state.

3.3.1 Admissible Variations

A deformed configuration of the beam is specified by the position of the mid
axis and the orientation of the moving frame, i.e.

é(s) = (r(s), A(s)) € Chp. (3.71)

Suppose that the configuration is perturbed relative to this configuration ¢(s)
by a set m(s) consisting of a superposed infinitesimal displacement u(s) and a
infinitesimal rotation 6(s).

n(s) = (u(s),0(s)) (3.72)

The new, perturbed configuration is denoted by ¢,(s) and is still an element of
the set Csp, of all possible configurations, equation (3.3).

P(s) = (r=(s), Ac(s)) € Cyp (3.73)

Note that the additional incremental rotation €(s) is a compound rotation.
Using equation (3.70) the new position and rotation of the mid axis can be
expressed as

re(s) =r(s) +eu(s); A (s) = exp[e®(s)]A(s). (3.74)

2In the derivation of the 2-dimensional beam, the internal forces are determined by deriva-
tion of the internal energy equation of the beam. The alternative name ‘first variation of the
beam’ is used instead. The balance equation can be considered as the first variation of the
energy equation as well.
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3.3.2 Linearization

The linearization will be done stepwise. First, the configuration variables are
linearized. After this the strain and curvature expressions will be tackled. The
results can be used to linearize the weak form of balance equations. A directional
derivative or so-called Frechet derivative is used to do so.

Configuration Variables

The set of configuration variables ¢(s) = (r(s), A(s)) is linearized first. The
perturbed configuration can be written as

¢-(s) = r(s) +eu (3.75)

Differentiation of this expression with respect to € and setting € = 0, the direc-
tional derivative of the vector r is determined.

Dr-u= [d(%;“)] _=ul) (3.76)

which is not surprising since the position vector is a linear manifold. The
(nonlinear) rotation of the configuration A is more complicated. Using the
exponential form of the incremental rotation tensor exp[®]

d(expe®A)

DA-® =
[ de

] = [@exp[e®]A]__, = OA (3.77)
e=0

The linearization of the transposed rotation tensor A’ can be found using an
identical derivation

DA ©' = —@A! (3.78)

Strain and Curvature

First the spatial description of the strain vector will be tackled. The strain of
the perturbed situation is equal to

e (% - E3> (3.79)

(3.80)

The linearized form of the spatial curvature tensor can be calculated in an
identical fashion. Using equation (3.7), the curvature in the perturbed situation
is equal to

dA dexp[e®]A
Q. = “CdA, = (%) exp[—c®]A’ (3.81)

ds
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After derivation of the first term, this can be written as

d ® dA
Q. = (%A + exp[e@]%> exp[—e@®]A" (3.82)

Using the identity AA" =1I:

d ®

Q. = <%> exple®] + exp[eO]|Q exp[—c O] (3.83)
s

This equation can be linearized completely except for the first term. It is shown

by Simo and VuQuoc [30] that this term can be replaced by

(dexp[a@]

- ) exple®] = —2

T (@' +0'6 - @@') (3.84)

When © is replaced by €@, the alternative spin tensor ® must be replaced by
%e@. The tensor ®' is the skew-symmetric tensor of the axial vector 6'. This
vector can be calculated by differentiating equation (3.61).

0 =

r !
tan L/1@ tani||@
an 5| ||] P an || ||9/ (3.85)

161 191l

Note that the derivative of ||0]||' = e - @',

| 1 tan 1|6 tan 110
8 = | 1+ tan? Ljo)) (e - o) — 2020 o )| o 4 tan2lOl g
i 2 11| 61| (3.56)
Manipulation of the quadratic tangent term gives
- 1 2tan 30| ) tan (10| ,
- - (e-0)e+—="—10 (3.87)
Los2%||0|| 161 6]

which can finally be rewritten as

o Ltan (/6] 161
6 =-"2"""1¢—(1- 0 3.88
2l [ ( Sim||9||>(e )e] (3:88)

Substituting equations (3.88) and (3.84) into (3.82) and taking the derivative
with respect to ¢, it follows that the linearized expression for the curvature is
equal to

DO =[], = 0O (3.89)

3.3.3 Weak Form of Balance Equations

The balance equations (3.28) and (3.29) must hold for all possible deformations
¢ = (r,A). Any admissible variation with respect to this deformation must also
hold, with the exception that they disappear on the boundary of the beam, i.e.
at s =0 and s = L.
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The balance equations are multiplied by the admissible variations n(s) =
(u(s), 8(s)), yielding

G(¢,n)=/[j—2-u+<i—?+%xn>-O]dszo (3.90)
L

Since the variation n(s) vanishes at the boundary, integration by parts of this
equation leads to the spatial version of the weak form of the balance equations.

du dr de
G(¢,7I)=/[n'(%—9X%>+m-£]ds:0 (3.91)
L

The stiffness of the beam, previously referred to as the second variation can be
obtained by linearization of the weak form of balance equations. This process
is completely adapted from Simo and Vu-Quoc [30].

3.3.4 Linearization of the Weak Form

The stiffness of the structure, previously referred to as the second variation
of the internal energy, can be calculated from the internal forces vector by
differentiating this term with respect to the displacement and rotations. In this
case, with the nonlinear description of rotations, it is done by linearizing the
weak form of the balance equations. This procedure is equal to the linearization
of the configuration variables and the strain and curvature measures. The
complete derivation can be found in a paper by Simo and VuQuoc [30].

The linearization of the weak form of the balance equations can be presented
in a Taylor series expansion notation.

LiG(p,n)] = G(¢,n) + D[G(p,n)]An (3.92)

The last term D[G(¢,n)]An is the Frechet derivative, which is equal to the
stiffness of the beam. It consists of two parts. The first part contains the
linearization of the internal forces vector [n, m]’. Recall the spatial version of
the equation that describe the internal forces,

n A 0| 5 |T
- [o 3l 499
Linearization of this equation and substituting the result in the weak form of
balance equation, gives

D[G(¢,n)].An = / [E & E"ds (3.94)
L
where E is a differential matrix, which can be written as

d
41 0
:[_gfo ix] (3.95)

[
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Since the deformations are prescribed in a nonlinear manifold, the second part
of the vector contains the linearization of the geometry variables. This part,
often called the geometric stiffness matrix, can be written as

DIG(g.mlaAn = [ [¥'BY] ds (3.96)
L

where ¥ is a second differential operator defined as

41 0 0
v = _df) d%I I] (3.97)
and B the so-called geometric stiffness matrix
0 0 [—n x I]
B = 0 0 [—m x I] (3.98)
[-nxI 0 n®r' —(n-r')I

where (n®r’);; = n;r;. This part of the tangent matrix is zero when the beam
is undeformed.

It is shown by Simo and VuQuoc [30] that it is non-symmetric when the con-
figuration ¢(s) = (r, A) is not in an proper equilibrium. Methods to overcome
these symmetry problems are discussed in the next section.

3.4 Numerical implementation

The analytical derivation in the previous sections can be used to define a finite
element description. Just as in the development of the 2-dimensional beams,
two components are required to obtain a workable nonlinear 3-dimensional finite
element, i.e. a first variation vector (i.e. the internal forces vector) and a second
variation matrix (the stiffness matrix).

The analytical description holds for arbitrary beam structures. It is there-
fore just a small step to apply it to a beam of finite length L. This can be either
a two node or a three node element, often referred to as linear and quadratic
elements respectively. Higher order elements can be deduced using the same
techniques but are not very common. The discretization is first executed for an
arbitrary finite element beam model with nel nodes. The specific implementa-
tion of the 2 node beam will be considered afterwards.

3.4.1 Discretization

A typical element is set up using nel nodes and has the initial length L. The
nodal incremental displacements u; and rotations @; are interpolated in terms
of shape functions (interpolation functions).

nel nel

u(s) =Y Ni(s)ur,  0(s)=> Ni(s)8; (3.99)
I=1 I=1

Here, nel represent the total number of nodes of the beam element, N;(s) the
shape function associated with node I, and uy, 8; are the nodal incremental
displacement and rotation of the element in node 1.
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Internal Forces Vector

The element contribution to the internal forces vector is obtained from the
discrete approximation to the weak form of the balance equations. Proceeding
in an element fashion, by introducing the interpolation functions, the discrete
approximation to G(¢,n) may be written as

E
G(¢,m) =Y Geld,n) (3.100)
e=1

where E is the total number of elements. The element notation of the weak
form of balance equation, G¢(¢,n) can be rewritten as.

nn

Ge(p:m) =L (¢) =D n-£1(9) (3.101)

I=1

Here, f17*(¢) denotes the residual force vector in the I th node of a typical ele-
ment. It can be computed using the discrete approximations of the differential
operator 2. Let E; represent the discrete differential operator associated with
node 1.

N1 0

B (A (3.102)

=1
In this expression, N; denotes the derivative of Nj(s) with respect to s, I =
Diag[1,1,1] is the unit matrix, and [r' XI] is a skew-symmetric matrix whose
axial vector is r'.
The spatial stress vector [n., m] is computed from the constitutive equa-
tions (3.30). The unbalanced nodal force £ for a single beam element, related
to node I can be written as

el = / Er [;] ds (3.103)
L

It can easily be seen that this integral equation is a system of 6 independent
equations. One for each degree of freedom.

The Tangent Stiffness Matrix

In the previous section, it is shown that the stiffness matrix consists of two
parts, an ‘ordinary’ part due to the linearization of the internal forces and
moments and a geometric part due to the linearization of the rotation tensor
A. The same interpolation functions can be applied to these equations, yielding

D[G(¢,n)]An = D[G(¢,n)]1An + D[G(¢,n)]2An = Sers + Kery
(3.104)

where the stiffness matrix S.;; is equal to

Sers = /E[cesgds (3.105)
L
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and the geometric stiffness matrix Teyy is equal to

Ty = /\IIIBB\IIf,ds (3.106)
L

where ¥; is the discrete expression of the second differentiation tensor ¥.

(3.107)

/
‘III:[NII 0 0]

0 NI NI

The total element stiffness matriz Kery is the sum of the ordinary element
stiffness matrix and the element geometric stiffness matrix.

Kerg =8ers+ Ters (3.108)

This matrix is non-symmetrical when the deformation is not an equilibrium
state. Since B2000 requires symmetrical matrices, the stiffness must be divided
into a symmetric and a skew-symmetric part.

Ko = (Ko + Ky KO = J(Kay—Klyy)  (3.109)
The symmetric part is used as the temporary stiffness matrix, the skew-symmetric
part is used for convergence checking: when all terms of this matrix are (almost)
equal to zero, a equilibrium state (at least in terms of the beam geometry) has
been found.

For the time being, just a 2 node beam element will be programmed. This
means that both I and J can obtain the values 1 and 2. Hence, the inter-
nal forces vectors f1}* is a vector with 12 elements; K77 is a 12 x 12 matrix.
Quadratic (3 node) and higher order elements can be derived using the same
procedures. In the next section, the interpolation functions of a two node beam
element will be discussed.

3.4.2 Interpolation Functions

Since the beam itself is a one dimensional object (the only position parameter on
the beam is the arclength parameter s) all variables are a function of s. However,
in the finite element description, just the displacement and rotations in the
nodes are known. Interpolation functions (or shape functions) are required to
achieve the relationship between these nodal displacements and rotations and
the displacements and rotations on the beam.

Standard shape functions have to fulfill just two rules. First of all the
‘normalized’ function should have the value 1 in the specific node and the value
0 in all the other nodes and second, the sum of all the shape functions must
have the value 1 in the complete integration domain, in this case s € [0, L].

In order to be able to integrate the equations numerically, the domain is
often transformed and normalized. Consider a new arc length variable, ¢ with
the domain £ = [—1,1]. The transformation equation is equal to

=2 (% _ %) (3.110)
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Figure 3.6: Interpolation functions for the 2 node beam element

The Jacobian of this transformation which will be needed in the integration
process is defined as follows

ds 1
_as _ 1. 111
i 2 (3.111)

J
An arbitrary function set up by two points is called a linear function by defi-
nition. A 2 node beam element is therefore called a linear element. The term
linear does not imply that the description of internal forces and stiffness is
linear. Just the interpolation functions are linear. The 2 linear interpolation
functions for the domain [—1, 1] are shown in figure 3.6. In an equation form,
the functions for node 1, N; and node 2, Ny can be written as

1 1
Ny = 5(1—5)3 Ny = 5(14‘5) (3.112)
So the discrete equation for the displacements u, reads

(1-¢) ux1+1(1+§) Uz (3.113)

Uy = 9

N =

where uz1 denotes the discrete displacement in the z-direction of the first node.
The differentiation of this expression with respect to s reads;

Uy Uy d€ 1 1 -1 —1 1
2= 20— (2, — Uy = —u, — Uy 114
s e s ( 2U1+2u2)J LU1+Lu2 (3 )

So, the differentiated interpolation functions are
N =—— ; Ny = — (3.115)

Eventually the interpolation of a three node beam can be obtained by following
the same principles. The three functions (node 1, 2 and 3) should have the
value 1 in the corresponding node and 0 in the other 2 nodes. The only way to
achieve this is by using quadratic interpolation functions. A three node element
is therefore often referred to as a quadratic element.
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-0.33998 10435 84856
0.33998 10435 84856
0.86113 63115 94053

n Sample point «; Weight r;

1 0.00000 00000 00000  2.00000 00000 00000

2 -0.57735 02691 89626  1.00000 00000 00000
0.57735 02691 89626  1.00000 00000 00000

3 -0.77459 66692 41483  0.55555 55555 55555
0.00000 00000 00000  0.88888 88888 88888
0.77459 66692 41483  0.55555 55555 55555

4 -0.86113 63115 94053  0.34785 48451 37454

0.65214 51548 62546
0.65214 51548 62546
0.34785 48451 37454

Table 3.1: Sampling points and weight factors for Gauss quadrature integration
for a one dimensional interval & = [—1,1]

3.4.3 Numerical Integration

The equations for internal forces and stiffness are written in an integral form
which have to be integrated over the interval s € [0, L]. This can be done by
hand, a laborious job which will result in enormous equations. A more distin-
guished manner is to integrate the equations numerically. A number of different
techniques can be used to do so. These techniques are more or less based on
the same idea. The function is evaluated at a number (k) of specific points, the
so-called sampling points. The values of the function in these sampling points
are used to set up a polynomial, by using weight factors. The primitive of this
it" order polynomial is known so that the polynomial can be integrated.

One of the most simple integration methods is the Newton-Cotes integration
method. The integration domain is assumed to be divided into n intervals, the
sampling points are spaced at equal distances. The Newton-Cotes procedure
for 1 interval is also known as the trapezoidal integration rule, the procedure
for 2 intervals as the Simpson formula. The performances of both methods are
rather poor. Good results are obtained when the domain is divided into more
intervals (> 4).

The previous integration schemes considered so far use equally spaced sam-
pling points. The Gauss Quadrature integration method uses optimized sam-
pling positions. The basic assumption of this method is that both the weight
factors ay,...,a, and the sampling points r1,... ,r, are variables. In lit-
erature [1], the weight factors and sampling points are presented for a one
dimensional domain [—1,1]3. They can be found in table 3.1.

The Gauss integration method is applied to the equations governing the

internal forces and the stiffness of the beam. Every component of this 12 x 1
vector and 12 x 12 matrix respectively must be integrated apart. The integral

3This is the one and only reason that the domain of the integrals in the previous section
is transformed from [0, L] to [—1, 1].
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equation of such a component can be written in the following arbitrary form.

L
F:/f(s)ds (3.116)
0

First this equation is transformed to the new arc length variable £, according
to

L
F:/f(g)Jdg (3.117)
0

where J is the Jacobian of the transformation, derived in equation (3.111). In
this case, since the interpolation functions vary linearly with respect to &, this
function can be integrated using the 2-point Gauss integrating technique. The
full equation can than be written as

F = alf(rl)J + OéQf(’I“Q)J (3.118)
The weight factors and sampling points in this case are respectively (table 3.1)

ry = —0.57735 02691 89626; a; = 1.0

ro = 0.57735 02691 89626;  a; = 1.0 (3.119)

Higher order integration methods will not result in significant more accurate
results.

3.4.4 Updating the Configuration

The rotations of the nodes cannot be used directly in this finite element for-
mulation: the update rotation tensor ® as well as the curvature Kk must be
calculated regarding the previous configuration.

Assume that the previous configuration in the point n—1 is known, i.e. ¢,,_;
containing the position of the mid axis r and the rotation of the frame A,_;.
The curvature tensor of the previous step, i.e. €,_1(s), is known too. The new
configuration ¢,, can be considered as a variation of the old configuration r,_;
where u and @ are the variables. This means that the following must hold

r,=r, 1+u A, =exp[®]A, 1 (3.120)

In this perspective, the most attention is paid to the calculation of the expo-
nential form of the rotation tensor. This has been done for arbitrary varia-
tions in section 3.3.1, but will be repeated here for the incremental rotation .

e The first aim is to determine the Rodrigues type rotation vector 8 and its
derivative. The normalized rotation vector e is needed for these calcula-
tions.

o= 9 (3.121)
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a(s) = tan%||0||e (3.122)
- 1ta1f1l||‘9||[ ( 110]| ) ]

0'(s)=-—2"U"lg _[1—— e-0e 3.123
=271l sy ) %) (3.123)

e The rotation tensor as well as its derivative can be calculated using the
Rodrigues rotation terms

e The rotation tensor can be used to determine the new position of the
moving frame A,

A1 =exp[@]A, (3.126)
e The curvature in terms of the moving frame

Q1= (dezfg[@]) exp[—0] + exp[O]|Q;, exp[— O] (3.127)

e Finally the curvature and strain can be transformed to the fixed frame
using the rotation tensor A

Kni1 = ALw, (3.128)

Dot = Al — Bs (3.129)

3.4.5 Transformation Matrix

The beam element is defined in a local coordinate system E;. The variables can
be transformed into branch global coordinates g; in a similar way as described
in section 2.4.1. Nevertheless, the construction of the transformation matrix T
is somewhat more complicated compared to the 2-dimensional beam element,
since an additional director n, is involved to define the exact position of the
element in the branch global space.

The position of the element is determined using 3 nodes, see figure 3.7%.
Node 1 can be considered as the beam’s origin, node 2 determines the endpoint
of the local E3 vector and is on the other end-point of the beam. The auxiliary

“This method is also used positioning the linear beam element which is already implemented
in B2000 [16].
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GIA
E;
node 3O/E'3
E2\ d T~ node 2
node 1

G3

Go
Figure 3.7: Orientation of the 3-dimensional beam element

third node is used to setup the element local Fi3-plane. The vector d need not
to be perpendicular to E3. The director in the local Es direction, ny, is normal
to the Ej3-plane and can be calculated by taking the vector product of the 2
vectors (E3 and d) that are used to set up this plane.

E, =E;3 xd (3.130)
E; can be determined in a similar way,

E; = E; x Ey (3.131)
The transformation matrix is formulated as

cos(E1,g1) cos(Eq,g2) cos(Eq,g3)
T = |cos(E2,g1) cos(Eg,g2) cos(Ez, g3) (3.132)
cos(E3,g1) cos(E3, g2) cos(Es, g3)
where cos(E;, g;) is the cosine of the angle between vector E; and g;. This
expression can be written as

_ E;-g;
||E:]| gl

When the vectors E; are normalized and g; are unit Cartesian base vectors,
E; = [1,0,0]%, this equation will reduce to

cos(E;, g5) (3.133)

cos(E;, g;) = BY) (3.134)

i
where EEj ) is the gth component (j = 1,2,3) of the vector E;. The transforma-
tion matrix will be
1 2 3
" g g
(3) (3.135)
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Figure 3.8: Beam deformation including shear effect

3.5 Locking Phenomena

In the previous chapter, the membrane locking phenomenon was already de-
tected on the curved 2-dimensional beam elements. Since the Bernoulli hy-
pothesis is not used in this 3-dimensional beam element, there is an additional
locking mode, namely shear locking. In this section, the shear locking will
be examined more closer and both the shear-locking as well as the membrane
locking effects will be tackled on the 3-dimensional element.

3.5.1 Shear Locking

In order to get a better idea of shear deformation of a beam in general, the shear
deformation of a plane beam element with shear effects will be considered. It
can be assumed that the results also holds for fully 3-dimensional beams.

In figure 3.8, a beam under shear is presented. The general shear deforma-
tion of the beam - can be written as

dw
=— -0 3.136
= (3.136)
For the 2 node beam element a set of linear interpolation functions have been
used to establish a relationship between node displacements and continuous
displacements. In this case the displacement w and the rotation 6 can be
written as

w(§) = Ni(§wy + Na(§ws 0(&) = N1(£)01 + N2(£)62
(3.137)
Substituting these interpolation functions into equation (3.136), gives
Y(€) = N1 (§)uyr + Ny(&)uyz — N1(€)0:1 — N2(£)0.2 (3.138)

And after substituting the linear interpolation functions, this equation can be
written as

1 1

1) = Tyt + T — (1= )01 = 5(1+ )02 (3.139)

2 2
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|
|-

Figure 3.9: Pure bending of a clamped beam

or

1 1
Y= E(Uzﬂ — Uy1) — 5(9Z1 + 022) + g(eu —0.2) (3.140)
The beam must be able to capture a pure bending state, also known as Kirch-
hoff’s mode. One of the characteristics of a pure bending state is that the shear

strain (or the shear stress) is equal to zero,
7€) =0 vV ¢el[-11] (3.141)

This equation can only be satisfied for all values of ¢ when all terms in equation
(3.140) are equal to 0. This also means that 6,1 = 6,5, = 0. Hence, a zero shear
strain can only be reached when there is no deformation at all.

A number of remedies is known to overcome this problem. Just on of them
will be considered in this case, the method of reduced integration. Other reme-
dies can be found in a paper by Ibrahimbegovi¢ [12].

3.5.2 Reduced Integration

The reduced integration or selective integration method is the best known and
the most effective remedy for locking problems. The idea is simple. Equation
(3.140) can be satisfied in one point, which is £ = 0. The equation reduces to

1 1
V= Z(uyZ — uy1) — 5(9z1 + 0.2) (3.142)

This equation can be satisfied using nonzero 6,1 and 6,5. Consider the case of a
clamped beam, i.e. u,; = 0,1 = 0, as shown in figure 3.9 A pure bending state
is satisfied when,

Uy2 = %GZQL (3.143)
since there is no locking when the shear strain is evaluated in the mid point of
the beam. In this point, the shear strain is equal to the average shear strain
and can therefor be used for the complete beam. When the shear terms of the
beam are integrated using a one-point (reduced) integration method, the shear
is just evaluated at £ = 0.
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3.5.3 Membrane Locking

Just as the 2-dimensional beam element, this element suffers from membrane
locking. The methods to overcome this problem are rather simple. As can be
seen in section 2.3.2, the function for membrane strain in the 2-dimensional
beam is

1 a a
€= 7 (U2 —w) + 57 (01 +05) + 557 (02— 61) (2.37)
Just as in the previous case, this problem can be overcome by applying the

reduced integration technique on the membrane strain.

3.5.4 Implementation

The first and second variation matrices are expressed in the fixed frame. As a
consequence of the transformation by the rotation matrix A , the membrane
and shear strain terms cannot be seen easily. They cannot be taken apart and
integrated with the reduced method afterwards. Other ways must be found
instead to apply the reduced integration method.

The membrane and shear strains are always multiplied by the stiffness pa-
rameters KA and kG A respectively. By setting these parameters equal to zero,
the membrane and shear terms are omitted from the integral equation. Af-
terwards, when the bending en torsion stiffnesses are set equal to zero, the
membrane and shear terms can be integrated with the one point Gauss inte-
gration. The complete internal forces vector and stiffness matrix, can be found
by summing the results.

fint,e — fint,e + fint,e . Ke — Ke

e
2 point 1 point? 2 point + Kl

point?

(3.144)

3.6 Element Mass Matrix

In the derivation of the balance equations for a 3-dimensional beam, the inertia
terms have been neglected. The beam was considered to be quasi-static. The
most important reason for this decision is that the inertia terms will have a
geometrically nonlinear mass matrix as a result. In the next chapter, when
the equations of motion are solved using a time integration method, the mass
matrix is assumed to be geometrically linear. In other words, the derivation of
the mass will not be used at all in the future. A simplified mass description
will be used instead.

The nonlinearity in the mass description just concerns the rotational inertia
terms. When a linear description is used, all errors occur in the rotational
terms. The 3-dimensional beam developed in this chapter is assumed to be
slender. This means that the radius of gyration of the beam r = /I/A is
smaller than 10~%. In other words, the moment of inertia is 100 times as small
as the beams cross-section. The rotational mass which is proportional to the
moment of inertia, is therefore much smaller than the displacement inertia.
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Instead of allowing this small error in the mass matrix, the inertia terms
can be omitted completely. The mass matrix will than reduce to a diagonal
lumped matrix, with zero terms in the rotational terms®. In case of a 2 node
beam element, the discretized mass can be written as

M; = /pA'rds (3.145)
L

where Y is the generalized lumped mass matrix

Y- [ASI g] (3.146)

This simple equation can be integrated analytically. For this specific two node
beam element the reduced lumped mass matrix M, can be written in the fol-
lowing form

1 1 1 1 1 1
M, = diag[im, 31 5, 0,0,0, 1M 51, 5, 0,0,0] (3.147)

where m is the total mass of the beam, m = pAL.

3.7 Closure

The beam that has been derived in this chapter is implemented in the B2000
platform as a two node beam element. Unfortunately, at the moment, this
element is not working properly. An outline of the current state of the element
is given in this section.

In linear cases, the performances of the beam are good. This implies that
the ordinary stiffness matrix S is derived correctly for an undeformed beam.
Furthermore, the reduced integration method in order to avoid the shear locking
problem works decently.

In nonlinear cases the beam does not function right. When it is bent,
the internal forces vector is wrong. The error increases with the curvature.
Deformation modes where bending is not an issue, axial strain and torsion, do
not have these problems. These problems can have two different causes. First,
when the beam is curved, the material refence frame e; is no longer equal to the
spatial reference frame t;. As a result, there is a difference between the spatial
description and the material description of the beam properties. Perhaps, these
two descriptions are misinterpreted in the derivations. In linear cases, when
these frames are equal, this problem is not relevant. Second, the membrane
locking phenomena is not tackled correctly. Since it only occurs in curved
beams, it is an indication that it may not be banned completely. The solution
can be found in the application of different techniques or the implementation
of new interpolation functions.

Since the quasi-static behavior of the element is rather poor, it is not tested
in a nonlinear transient analysis at all. Testcases in which the static as well
as the dynamic performances of the element are considered, can be found in
chapter 6.

®This idea of developing a mass matrix is also used in STAGS [22].



68

3. A 3-DIMENSIONAL BEAM ELEMENT




The Implicit Time Integration
Solver

The deformation of a structure due to external loads can be described by a
number of mathematical models. The simplest one is the static linear model.
This limited model is accurate when deformations of the structure remain small.
Buckling behavior and stability analysis can be calculated using the nonlinear
static equations of equilibrium. In both cases the dynamic behavior (velocity
and acceleration) is neglected as well as the variation of the applied loads in the
time domain. When these dynamic phenomena are included in the model, the
resulting system of nonlinear equations is called the equations of motion'. This
is the most complete and accurate model for the description of all mechanical
behavior of structures.

All three models described above are implemented in the B2000 platform.
The static linear model in the B2LIN macroprocessor, the nonlinear model in
B2CONT and the kinematic model in the B2ETA macroprocessor. As opposed to
the #mplicit solvers B2LIN and B2CONT, the equations of motion in transient
macro-processor B2ETA are solved using an ezplicit solution technique. Since
this solution technique is based on a different finite element model, B2ETA cannot
directly be used in combination with the implicit solvers B2LIN and B2CONT.

The mode jumping phenomenon (which will be discussed in Chapter 5) can
be calculated using both a nonlinear static as well as a transient solver. To
provide a mode-jump analysis technique in B2000, the need arose to implement
an implicit transient. A first step was taken by K. Yildirim [34] in 1996. His
solver was called B2IDTI and was able to solve linear responses of structures,
using Park’s time integration method [20, 21] and Jensen’s transformation algo-
rithm [13]. A well fixed combination that is used in many other finite element
platforms, such as STAGS [22], currently under development at Lockheed Martin.

!The equations of motion are often referred to as dynamic equilibrium equations or kine-
matic equations. Although all terminologies are correct, in this report the first name will be
used.
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In this chapter the linear algorithm is evaluated as well as the development
of the nonlinear solver. In the first sections a number of implicit time integration
algorithms will be examined. On the basis of stability and accuracy criteria,
the best algorithms will be chosen and implemented. Methods to solve the
generated system of nonlinear equations are reviewed in section (4.5). Finally
the solution strategies as well as the implementation of the macroprocessor will
be described.

4.1 The Equations of Motion

The nonlinear equations of motion can be derived from Newton’s second law
and written in the following form:

Mii + Cti + f(u;t) = 0 (4.1)

where M and C are the discrete mass and damping matrices respectively; 1
and 0 are the acceleration and velocity vectors. The matrices M and C are
assumed to be symmetric and positive definite?. The vector f(u;t) is the total
force vector. This vector can be divided into an internal force vector f™*(u),
which depends on the displacements of the structure and an external, time
dependent force vector £***(¢), so that the equation can be written as

Mii + Cu + f*(u) = £°(¢) (4.2)

When the internal forces of the structure are described by a linear function,
they can be rewritten as f**(u) = Ku where K is the linear stiffness matrix,
that is constant for all displacements. In that case, the equations of motion
reduce to

Mii + Ct + Ku = £(¢) (4.3)

This linearized formulation can only be used when displacements are assumed
to remain very small.

4.1.1 Loading and Initial Conditions

The nonlinear equation of motion can be considered a second order non-homogeneous
differential equation, ODE in short. A structural model governed by this equa-
tion, can be loaded in two different ways: by a prescribed force function or by
prescribed displacements. A combination of both is possible as well.

Prescribed external forces:
The load is applied as discrete time dependent external forces or moments.
In the ODE, these loads are present in the external load vector f*(¢),
the non-homogeneous right-hand-side of the dynamic equation. Likewise,

When the mass and damping matrices are assumed to be nonmlinear, i.e. they depend
on the current displacement, this is not necessarily true. In some conditions, both the mass
and damping matrices can become a-symmetric. However, in this report these matrices are
considered linear.
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body and surface forces such as gravitational forces and traction have to
be translated into discrete nodal forces before they can be added to the
external forces vector.

Prescribed displacements:

The structure can also be deformed by prescribing certain displacements.
In real life such a deformation can be found in a laboratory testing bench,
where for instance the buckling loads of specimens are tested by control-
ling its end-shortening. The prescribed displacements have internal forces
as a result. Since the velocities and accelerations are the first and sec-
ond time derivatives of the displacements also damping forces and inertia
forces occur in the transient process.

A system of second order differential equations cannot be solved without initial
conditions ug, Gg. In many cases the structure is undeformed and at rest, the
initial conditions uy and 0y are equal to 0. Initial conditions that are not equal
to zero can be the results of a previous calculation, which can either be a static
analysis with B2LIN or B2CONT? or a previous transient analysis. In that case,
the transient analysis can be restarted at a starting time ¢y with the initial
conditions u(tg) and u(tg).

4.1.2 Stiff Equation

The equation of motion is often called a stiff ODE due to the existence of
greatly differing eigenfrequencies. In a second order differential equation time
constant is the term used for eigenfrequencies of the construction. The number
of eigenfrequencies of a discrete structure is of the same order as the number of
degrees of freedom, varying from the lowest ‘base’ frequency up to the highest
‘overtone’ with a period that is just a small fraction of the base period. The
importance of these overtones in the response of the structure decreases with
increasing frequencies. It can be said that for a global dynamic analysis just
the first frequencies have a dominant influence on the response of the structure.

4.1.3 Rayleigh’s Damping Coefficient

Since transient analysis is a relatively new field in (computational) mechanics,
over the years, little attention was paid to the development of a proper descrip-
tion of the damping. Correctly formulated damping matrices are a rarity, which
is not surprising, since the damping phenomenon is a complicated mixture of
many physical subdivions, for example irreversible thermodynamic processes
or plasticity. Many older finite element models, does not have a description of
a damping term at all. In order to have a workable tool to model damping,
Rayleigh has developed a simplified formulation. The damping is considered to
be a summation of the element inertia (mass) and stiffness matrices.

C(u) = aM + fK(u) (4.4)

*When the results of a static analysis are used to restart the transient analysis, the initial
velocity 1 is of course equal to zero.
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The positive factors « and 8 are the so-called Rayleigh damping factors. Note
that in the nonlinear case, the damping is dependent on the displacements.

Although this formulation is not correct by far, simple global damping phe-
nomena can be simulated quite well. In section (5.2.2) two models are presented
to calculate proper values for o and S.

4.1.4 Solution Strategies

The equation of motion will be solved using a implicit integration method.
Implicit integration methods can be divided into two classes: methods to solve
first order ODE’s and methods to solve second order ODE’s. In this particular
case the equations of motions will be transformed into a first order ODE first
by using Jensen transformation algorithm [13]. The ODE’s will be solved using
a special class of implicit integration methods, the linear multi-step methods.

In the following sections, an appropriate linear multi-step algorithm will be
selected after investigating its accuracy and stability. Furthermore the trans-
formation of the ODE using Jensen algorithm will be discussed. Methods to
solve the generated nonlinear system of equation will be reviewed in sections
(4.5) and (4.6).

4.2 Linear Multi-step Methods

In many time integration methods, like for instance the well known Runge-
Kutta method, the value of a variable y(¢,) at step ¢, is determined by using
the information obtained in the previous step, at t,_1. In order to obtain a
more accurate and stable iteration method, it can be useful to use the function
values in more than one previous meshing point (t,—1,tn—2,... ,tn_). Such
methods are called linear multi-step methods® (LMS in short) or more specific:
k-step methods.

Strictly speaking, i.e. from the mechanical point of view, this approach is
not correct. The dynamic behavior of structure does not depend on its behavior
in the past, it does not have memory capacities. In principle, every calculation
can be restarted at any point by using the current displacements and velocities
and neglecting all previous steps. In the the, the consequences of using also the
points t,_1,t,_2, etc. will be pointed out.

In general, LMS schemes can be divided in two classes: the k step 1 deriva-
tive and the k step 2 derivative schemes for first and second order differential
equations respectively. Since the dynamic equation will be transformed into a
first order system, only the first class of LMS schemes will be considered.

“Note that the concept linear in the name linear multi-step methods has nothing to do
with the linearity of the dynamic equation (4.1). On the contrary, the LMS method can used
to solve nonlinear equations as well. The term linear stands for the linear form in which the
method is expressed.



4.2. LINEAR MULTI-STEP METHODS 73

\J

L
tnf4 tn73 tn72 tnfl tn

Figure 4.1: The solution of the first order differential equation in the previous
time steps

4.2.1 General Form of a Linear Multi-step Scheme

Consider a system of N first order differential equations,

y =1£(y) (4.5)

where y is the first derivative of y in time ¢ and f(y) is an arbitrary (non)linear
function of y (f(y) : Ry — Ry). The equation is supposed to be solved
numerically, up to the n — 1** step at t = t,_;, as indicated in figure (4.1).
Since the time-step is constant, it is possible to formulate a k' order polynom
that connects these solutions. The solution of (4.5) at ¢ = ¢, can be found
by extrapolation using this polynom. The polynomials can be constructed by
using several techniques, which for example can be found in [7].

The polynomial that connects the current and previous solutions can be
written in the following general form.

k

> (eiyn—i — hBifn_i) =0 (4.6)

i=0
The coefficients «; and g; follow from the technique that is used to set up the
polynom and determine the kind of method. The coefficient «y is often set to 1
resulting the following alternative form of an LMS scheme in which the current
solution y,, and its derivative y,, are separated from the previous solutions (note
that the identity y = f(y) must hold).

Yn = hgyn +hy (4.7)

where hg is the modified time step

hg = hf (4.8)
and hj, the historical portion containing the results in the previous steps:
hy = [hBif(Yn—i) — iyn—i] (4.9)

1=1



74 4. THE IMPLICIT TIME INTEGRATION SOLVER

Since 1950, a number of LMS schemes have been developed for a variety of
purposes. In order to select the best method to solve the the second order
differential equation, two phenomena must be considered first, stability and
accuracy. In the next paragraphs these notions are examined.

4.2.2 Spectral Analysis

In order to study the stability behavior of LMS schemes applied to structural
dynamics, it is important to investigate the spectral properties of the equations
of motion. These spectral properties describe the kinematic behavior of a con-
struction when it is released from a certain deformation with a certain initial
velocity, when no external forces are applied. In other words, the dynamic
behavior of a structure is stored in the spectral properties.

The equation of motion will be examined by transforming it to a first order
O.D.E. first. This will be done using a standard reduction technique, which
transforms the equation of motion into a space-state equation by assuming a
new vector y which is composed of both the displacement and the velocity
vector.

X

y = [x] (4.10)
The equation of motion can be written as
% = M~ H—Cx — Kx + ] (4.11)

where M ™! is the inverse of the mass matrix. This expression can be combined
with (4.10) to yield

[ﬂ - [—MolK _Mllc] [ﬂ + |:M01fext:| (4.12)

or, equivalently
y = Gy + H(t) (4.13)
where G(t) and H(¢) are given by

0 1 0
G = _MflK _Mflc ’ H(t)_ |:M1fext:| (4'14)

The next step in the spectral analysis is to decompose the system of equations
into N uncoupled scalar equations. Each one of these equations describes a
particular deformation mode. Since every response is built of several different
modes, the characteristics of the total response are embedded in the character-
istics of these modes. The eigenvalue problem related to equation (4.13) can be
written as:

(G — M) =0 (4.15)
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where 1) is an eigenvector of the problem and A the corresponding eigenvalue.
Substituting the expression for G obtained in equation (4.14) gives the following
expression for the eigenvalue problem of the reduced equation of motion.

([—MolK _Mllc]”[(l) ﬂ) [i;] :[g] (4.16)

where 1, and 15 are the two elements of the eigenvector 1,

1/)1]
= 4.17
o=y (1
Equation (4.16) can be rewritten as:
—Ap; =0
¥y — A, s

—M 'Ky, - (M'C+ A1) ¢, =0

Substituting the two equations and pre-multiplying by M, yields a quadratic
eigenvalue problem in terms of the unknown A.

(K +AC+ X*M) 3, =0 (4.19)

For the time being, the undamped vibration will be considered by omitting

the damping matrix C. The systems corresponding to the I and the m!*
eigenmodes can be written as
(K+AM) ;=0 (4.20)
(K +A2,M) ¢y, =0 (4.21)

Pre-multiplying the first equation by %%, and the second by !, yields after
subtraction

(A7 = A) %1 My, = 0 (4.22)
Since by definition A\; # Ay, the following must hold
YuMpy, =0y, (4.23)

where ¢!, is the Kronecker delta. According to the same orthogonality principle,
the eigenvalue for the stiffness matrix can be determined.

YLKy, = =40, (no sum) (4.24)
In case of equations of motion, the eigenvalue A; is often referred to as the
eigenfrequency belonging to the [“» mode wj.

wi = -\ (4.25)

With the model decomposition of the undamped equation at hand, the damping
matrix C can be re-inserted. Using Rayleigh damping as presented in the
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introduction and the orthogonality functions (4.23) and (4.24), the damping
matrix can be written as

YiCy,, = (o — wiB)dL, (4.26)

The characteristics of an arbitrary dynamic response of a structure can be
expressed in terms of eigenfrequencies and damping ratio’s. The damping of a
single degree of freedom system is always expressed as

Cc = 2&(.4); (4.27)

where ¢ is the damping ratio. In this case the damping is equal to (a«—w?(3). The

damping ratio of the [ mode can now be expressed in terms of the Rayleigh
constants.
a+ 3
& = (4.28)

2N,

After substituting of the Rayleigh damping matrix and using the terminology
above, the solution in equation (4.26) can be written as

M 426w +wf =0 (4.29)

The equation can be solved analytically for the eigenvalues A. The possible
solutions of this equation can be divided into four groups.

Damping Eigenvalues Description of response

1. £€=0 A2 = Fiw Undamping vibration
2. 0<€<1 A o= —Ew tiwy/1 — &2 Underdamped vibration

3. £=1 Alg = —w Critically damped vibration

)

4. £€>1 Ao = —€w+iwy/1 — &2 Overdamped vibration

The complex solutions for A\ » can be plotted in a complex plane C. All possible
eigenvalues are in the negative half plane of this complex plane, including the
imaginary axis, fig. (4.2), since by definition both £ and w; are assumed to be
positive and real.

4.2.3 Stability Regions of LMS Schemes

In the investigation of the spectral properties of an arbitrary first order LMS
scheme, the following single degree of freedom, first order ODE will be consid-
ered.

7=y (4.30)
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Figure 4.2: Area in the complex plane in which \; » occurs

where A is the complex eigenvalue for this problem. An analytical solution of
this simple equation is known. At a time ¢ = ¢,, (¢, > 0) and for an initial value
y(tn—1) the value of y(t,) is:

y(tn) = M=ty 1)V by —tye1 >0 (4.31)

In the previous section it has been shown that A is always complex and in the
negative half plane of the complex space. The solution of the first order ODE,
y(tn), is therefore complex and decaying as well.

ly(ta) < ly(tn—1)| ¥V ta>0 (4.32)
A numerical solution can be obtained by using an LMS scheme, as presented
in equation (4.6). In this case f(y) = Ay, so that,

k
Z(ai + hBiA)Yn—i = 0 (4.33)

1=0

In this equation the new results y,, can be connected to the previous results
Yn—i with the amplification matrix A.

Yn Yn—1
Yn—1 Yn—2

R N e (4.34)
Yn+1-k Yn—k

where the k& x k amplification matrix can be written as:
—(a1=AhB1)  —(a2—AhB2) —(as—AhfB3) — (o —AhBs)
ap—Ahfo ap—Ahfo apg—Ahfo Tt ap—Ahfo
1 0 0
A= 0 1 0 e 0
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Figure 4.3: Stability region of an arbitrary LMS scheme

Since the solution of the differential equation is always decaying, the ampli-
fication of the solution may never be greater than ||1||. In order words, the
convergence of an LMS scheme can be proven when

1Al < 1 (4.36)

where ||A|| is the natural matriz norm of the matrix A. There are many
examples of natural matrix norms that can be applied to this equation. A more
applicable condition is given by Hughes et al. [10].

Definition 4.1 An LMS scheme is stable when all eigenvalues p;—1 2 . x of the
amplification matrix A are smaller than one in modulus.

The eigenvalues p; of the amplification matrix A can be determined using the
following formula

1A — 1) =0 (4.37)

The collection of complex values \;h, for which the eigenvalues of the amplifica-
tion matrix are smaller than 1, can be plotted in the complex plane, as shown
in figure 4.3. The stability behavior of LMS schemes (and time integration
methods in general) can be divided into a number of classes measured to the
stability properties. These classes are proposed by C.W. Gear [7, 10]. The two
most important degrees of stability are absolute stability and A-stability.

Definition 4.2 The region of absolute stability of an LMS method is the set
of Ah € C at which the method is absolutely stable

Definition 4.3 A numerical method is said to be A-stable if the solution pro-
duced by the LMS scheme approaches 0 when the number of steps goes to
infinity.

If an LMS scheme is stable for all possible imaginary values of Ah it is called
unconditionally stable. In practice this means that there is no restriction in the
choice of the time step h. All LMS schemes where the stable region includes the
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complete left-hand-side of the complex plane are called unconditionally stable.
When due to numerical damping (see next section) the solution decays to zero
when the number of steps n go to infinity, the scheme is also A-stable. The
most useful LMS schemes are those that satisfy these two conditions.

4.2.4 Accuracy

Besides the stability of the method, there are other important characteristics
that influence the performances of an LMS scheme. Although the iteration
process can converge, there may be errors in the calculations. These errors
can be divided into 3 categories: the truncation error, numerical damping and
frequency distortion or the so-called phase shift.

Truncation error

The truncation error is the difference between an analytically correct answer at
a certain point t; and the numerical solution at this point. Although the chosen
time step does not influence the stability of an A-stable method, it does has
its influences on the error. When the time-step is larger, the truncation error
will be larger too. This error may seem small in the beginning, errors made in
previous steps will accumulate the next error.

Numerical Damping

The response of a structure calculated with an A-stable LMS scheme always
decays to zero, even when the there are no damping terms in the equation
of motion. During the calculation, a little amount of energy is dissipated.
This effect is called numerical damping and is inherent to most LMS schemes.
Despite it truncates the numerical solution, it has a number of benifits.

The unstability of a time integration method can be seen as the presence of
negative numerical damping. The total amount of energy grows and hence the
displacements or velocities are every step a little to high compared to the real
converged solution. After a number of steps, these disturbances become bigger
and bigger with divergence as a concequence. When there is a little amount of
numerical damping, these effects are immediately counteracted and the solution
remains stable.

The numerical damping is most often proportional to the time step. Time
steps that are large compared to the vibration mode periods, have a large
amount of damping as a result. As a consequence of this, numerical damping has
another additional benefit. The overtones of a vibration, which are recognized
by their high frequencies, are damped since the chosen time step is very large
compared to their periods.

It is difficult to determine the amount of numerical damping for each method
analytically, so one must rely on numerical techniques. For instance, the damp-
ing can be determined by calculating the numerical behavior of a system, with
a known analytical response.



80 4. THE IMPLICIT TIME INTEGRATION SOLVER

Frequency distortion

Frequency distortion, or period shift, is the effect that the calculated period of
the vibration is shorter than the actual period. Again, this effect is proportional
to the time step. When the time-step is small compared to the period of the
vibration, the frequency distortion will be small.

4.2.5 Nonlinear Stability

When the equations of motion are nonlinear, the eigenvalue ); is not constant
and usually varies at each time step. It can even be possible that the eigenvalue
becomes positive at some time steps. The previous conclusions concerning the
stability of the LMS methods are no longer valid under all circumstances.

Since the eigenvalue is also time dependent, an alternative notation will be
used. The eigenvalue at the n'* step will be denoted by \,. The amplification
matrix A for nonlinear equations can be written as

—(a1—Ap1hfB1)  —(a2—An2hf2) —(az—Ans3hfB3) —(ap—AnthBr)
1-XnhfBo 1-XnhfBo 1-AnhfBo T 1-XnhfBo
1 0 0 . 0
A = 0 1 0 . 0
0 0 0 . 0

The eigenvalues p of the amplification matrix depend on the combination of
the current and the previous eigenvalue A\, _j of the problem. Again the LMS
scheme is stable if all eigenvalues 1 of the amplification matrix are smaller than
1. However, since the system of stability regions depends on more than one
eigenvalue ), it cannot be drawn in the complex plane anymore.

4.3 Selection of an Appropriate LMS

It may be clear that the choice of the LMS scheme relies on the type of equation
that has to be solved. Linear or nonlinear equations require different integration
methods and even the presence of a damping matrix can influence the right
choice for an LMS scheme. In this section a number of LMS schemes, which
have been developed for structural equations

4.3.1 Trapezoidal Rule

It has been proven by Dahlquist that the most accurate A-stable method is the
trapezoidal rule [10]. This method is in fact a 1-step method, but it will be
presented as an LMS method. The trapezoidal rule is one of the manifestations
of the Newmark algorithm as presented by Bathe [1], which can be understood
to be an extension of the linear acceleration method. The displacement and
velocity vector can be calculated using

u, = up_1 + h[(1 — 0)0,—1 + 00,] (4.38)
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where the free variable ¢ is a parameter that can be used to tune the integration
accuracy and stability. In case § = % the trapezoidal rule is obtained. In the
LMS conventions, the a; and (; coefficients are (recalling that g = 1):

Method o 1 o1 a9 a3 Trunc. Error

;L O(3h°)

N[

Trap. rule

Table 4.1: LMS constants and truncation error for the trapezoidal rule

Stability

The implicit trapezoidal rule is unconditionally stable for linear equations. The
stability region encloses the complete left hand side of the complex plane C, the
imaginary axis included, as can be seen from figure (4.4). The characteristics
of this method in nonlinear analysis are rather poor due to the changing eigen-
values of the response. When one of the eigenvalues of a previous step A, 1
is smaller than the current eigenvalue, the method becomes unstable. For this
reason it cannot be used in a nonlinear analysis.

Accuracy

The method appears to be very accurate. As can be seen in the figures (4.5)
and (4.6) the trapezoidal rule does not have any numerical damping at all and
the frequency distortion is the lowest one of all known LMS schemes. The
truncation error is also in proportion. Most probably, the absense of numerical
damping leads to the unstability in nonlinear analysis.

4.3.2 Gear’'s Method

One of the first methods that were psecifically designed to deal with the stability
problems of stiff equations were the k-step Gear’s methods. Gear proposed a
set of 6 k-step methods, but only the 2 and 3 step methods will be discussed
here. The derivation of these methods is rather complicated and will not be
reviewed in this context. For more information, one can refer to [7]. The LMS
coefficients of these methods are:

Method Bo a1 %) Qg Qy Trunc.
error

Gear 2 step 2 : - O(2h3)

Gear 3 step L 18 - 2 O(ZhY)

Table 4.2: LMS constants and truncation errors for Gear’s 2 and 3 step method
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Figure 4.4: Stability regions for the trapezoidal rule, Gear’s multi-step methods
and Park’s method.

Stability

The stability regions of the Gear 2- and 3-step methods are illustrated in figure
(4.4). As may be concluded from this figure, the 2-step Gear method is in fact
A-stable, that is, the region is which instability occurs is completely in the first
and fourth quadrant of the complex plane. The imaginary axis is completely
in the stable region. The instability region of the 3- (and higher step-) Gear
methods however contains a little piece of the second and third quadrant as well
as the imaginary axis. As a result of this, this LMS scheme is inappropriate for
structural dynamic applications.

Accuracy

Although the 2- step Gear method is unconditionally stable, it produces a
reasonable amount of numerical damping. When the time step is chosen 1/10%"
of the period, the numerical damping ¢ is over 0.1. The unstability of the three
step method also reflects in the figure for numerical damping. For small time
steps, the numerical damping is negative. This condition will always lead to
unstability.

4.3.3 Park’s Method

The multi-step methods described earlier all have some serious problems. Most
methods have very poor stability behavior, like for instance the trapezoidal
rule or Gear’s 3-step method. On the other hand, the unconditionally stable
Gear’s 2-step method adds a large amount of numerical damping to the system.
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Figure 4.5: Numerical damping ratios versus relative time step h/T of the
trapezoidal rule, Gear’s multi-step methods and Park’s method.
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Figure 4.6: Numerical period shift or frequency distortion versus relative time
step h/T of the trapezoidal rule, Gear’s multi-step methods and Park’s method.
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Park’s method intents to combine two such methods, in order to eliminate both
bad characteristics with an unconditionally stable method, with hardly any
damping, as a result [21]. The new method P is constructed out of two methods
(m and n steps respectively) using the following equation:

where the multipliers C,, and C), are constant and the identity
Cm+Cn=1 (4.40)

must hold. It need no proof that when both G}, and G,, are linear multi-step
methods, Pp,, is a linear multi-step method as well. The best result, with
respect to the stability of the method, is obtained when using Gear’s 2-step
method (G2 in short) first. In principle every combination of this method and
an arbitrary (unstable) method, using the right multipliers, will lead to an
unconditionally stable method.

PQ,n = (CyGy + C, P, (4.41)

The best results however can be achieved by combining the Gear’s 2 and 3 step
methods using equal weighting coefficients, Cy = C3 = % The coefficients for
the LMS scheme «a; and 3; become

Method Bo 1 oy a9 «3  Trunc. error
6 15 6 1 113
Park 10 10 10 10 O ( 10 h )

Table 4.3: LMS constants for Park’s method

Stability

According to figure (4.4) it may be clear that the Park method is indeed A-
stable, the complete left-hand-side of the complex plane as well as the imaginary
axis is in the stability region.

It can be shown[20] that for nonlinear equations, the stability of the method
depends on the current eigenvalue only, instead of a combination of previous
and current eigenvalues, which was the case for the trapezoidal rule. Since
Park’s method is A-stable in the linear case, it is also A-stable for nonlinear
equations.

Accuracy

Furthermore, the amount of numerical damping is smaller compared to Gear’s
2-step method, as well as the frequency distortion. This is the result of the
combination between the overdamped 2-step method and the 3-step method
with negative damping. Also the amount of frequency distortion is an average
of both methods. In case of nonlinear equations the numerical damping and
frequency distortion are not constant, since the eigenvalue A changes at every
step.
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Figure 4.7: Numerical damping for Park’s method, including 1! and 2"¢ step

4.3.4 Cold Restart Conditions

It is obvious that LMS schemes cannot be used when there are not enough
previous points available. For instance, the 3-step Park method requires special
starting algorithms for the first and second step. It is possible to use the
trapezoidal rule and Gear’s 2-step method for the first two steps. Nevertheless,
when the equation is nonlinear, the trapezoidal rule can be become unstable.
Gear’s two step method produces a large amount of numerical damping.

Together with the development of his 3-step method, Park proposed a 1-
and 2-step method as starting algorithms.

Method Bo B oy o o
Park (1% step) > L -1

Park (2" step) 5 2 2

Park (full) z ~ 1 5 L

Table 4.4: LMS scheme for Park’s method, including 1% and 2"¢ step

Although these starting algorithms have worse accuracy qualities compared
to the full Park method, their stability behavior is on the same level.
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4.3.5 Conclusion

The best choice of an LMS scheme depends on the spectral properties of the
ODE which has to be solved. In case of the stiffly stable kinematic equation,
three methods are absolutely stable, the trapezoidal rule, Gear’s 2-step method
and Park’s method.

Gear’s 2 step method is the least accurate of these. It has a rather large
amount of numerical damping. The trapezoidal rule does not have any numer-
ical damping at all, but can become unstable when the equation is nonlinear.
Park’s method is the most allround method. Its stability characteristics are
good even in the nonlinear case, although it is less accurate than the trape-
zoidal rule.

When the equation is linear, the trapezoidal rule is the best choice, since
the method is unconditionally stable for linear equations and it produces no
numerical damping. When the equation is nonlinear, Park’s 3-step method is
preferred. Although it produces a notable amount of numerical damping, its
stability behavior for nonlinear is much better. Gear’s 2- and 3-step methods
do not have this positive characteristics, but may be useful in some very specific
situations.

4.4 Implementation of the LMS method

Before the LMS schemes can be used, the system of second order differential
equations has to be transformed into a system of first order ODE’s. In the
previous section, when the spectral properties were determined, the equation
was transformed into a so-called state-space. Although this method pleases for
a rather straightforward, analytical evaluation of a differential equation, it has
a lot of disadvantages. First of all, the number of equations will be doubled.
In practice, a system of equations which is 2 times as big, needs approximately
22 = 4 times as much numerical actions to solve. Also, the presence of the
inverse of the mass matrix (M~!) in the formulation, will make the solution
procedure more sensitive for badly formed mass matrices.

The usage of an LMS scheme offers the possibility to use an alternative
method proposed by Jensen [13]. This method does not have the two prob-
lems mentioned above. It is very robust and extremely suitable for numerical
applications.

4.4.1 Jensen’s Transformation Algorithm
Consider an auxiliary system of equations of the form
v = AMi + Bu (4.42)

Where the matrices A and B are arbitrary except that A is not singular. The
derivation of this equation with respect to time ¢ gives

v = AMii + Bu (4.43)
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Multiplication of the (non)linear dynamic equilibrium equation (4.3) with the
matrix A will give

AMii + ACua + AKu = AFf™(f) (4.44)

Substituting (4.43) into (4.44) results in the following system of equations:

acYs 1)+l [ax o) 1] = ar-] (149

The general formula for a linear multi-step algorithm (4.7) can now be substi-
tuted.

acts 1 [ ik o ] =

(4.46)
L 0 n AM 0| |h"
7 |Afet] T |AC-B I]|hY
After collecting terms
AM +hsB  —hgl]| [u]  [AMB® (0.47)
A(C+hgK)—-B 1 vl | Aq '

where h" and hY are the historical vectors of the displacement u and auxiliary
vector v respectively and

Aq = hzAf* + (AC — B)h" +h" (4.48)

This matrix equation can be solved algebraically by multiplying the second row
with hg and multiplying with A~ to obtain

Eu = Mh" + h3q (4.49)
where E is the dynamic stiffness matriz

E =M+ hgC + 3K (4.50)
The auxiliary vector v can be solved using

v=Aq—-[A(C+ h3K) —Blu (4.51)

The equations still contain the two matrices A and B. Since they could be
chosen arbitrary it is convenient to take A = I and B = C, remaining the
so-called linear Jensen equation,

[M + hgC + h3K]u = Mh" + hgh” + h3f (4.52)
which can be re-written as

Eu=g (4.53)
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where g the dynamic history-force vector:
g = Mh" + hghY + h3f (4.54)

The linear Jensen equation can now be solved for u. When a nounlinear element
formulation is used, the term Ku in equation (4.52) must be replaced by f**(u)
yielding the nonlinear Jensen equation

Mu + hgCu + £ (u) = Mh" + hgh" + h3f™(¢) (4.55)

The solution of this particular equation requires nonlinear solution techniques,
which will be described in section 4.5. After the displacement u has been
calculated, the velocity of the system can be determined by using the original
multi-step formula (4.7).

u—h"
hs

u=

(4.56)
The accelerations need not to be calculated in this procedure.

4.4.2 Prescribed Displacements

The prescribed displacements can be formulated as time dependent boundary
conditions. Since they can be nonzero, prescribed displacements imply an in-
ternal force. In order to get a better idea of handling time dependent boundary
conditions in a system of equations, a simple example, the linear static equation,
is considered first.

Linear Static Equation

Consider the following linear system of static equilibrium equations
Ku = (4.57)

where K is the stiffness matrix and f** the external forces vector. The total
number of degrees of freedom in the equation is N. There are M (0 < M <
N) prescribed displacements. The displacement vector u can be split into 2
parts, u/ and u?, where the subscripts f and p stand for free and prescribed
respectively. The vector u? consists of zeros except for the degrees of freedom
that are prescribed; in u/ all elements are nonzero except for the prescribed
ones. Obviously, the following equation must hold

u=u’+u (4.58)
Equation (4.58) can be substituted into the equilibrium equation (4.57)
Ku/ + Ku? = ¢ (4.59)

The second term, Ku?, is known and can therefore be carried to the right hand
side of the equation

Ku/ = — Ku? = £ — f? (4.60)
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where fP denotes the forces due to prescribed displacements. The system of
equations can now be solved for u/. Some problems can occur since the system
is undetermined: the number of degrees of freedom has been reduced to N — M,
while the number of equations remains N. Such an ‘unbalanced’ system must
be solved using a penalty values technique. This technique is widely used in
finite element methods and therefore too trivial to discuss here.

When the solution for u/ has been obtained, the displacement vector must
be recomposed by adding the prescribed displacements to the reduced displace-
ment vector yielding u = u/ + u”.

The Dynamic equation

Since the velocities and the accelerations are the time derivatives of the dis-
placement vector, these vectors can also be divided into a free and a prescribed
one.

=l +uP (4.61a)
u=u + o’ (4.61b)
u=u’ +uf (4.61c)

The prescribed accelerations and velocities introduce inertia and damping
forces. Following the same procedure as before, the nonlinear dynamic equation
can be written as

Mi/ + Mii? + Cu/ + Co? + £ (u) + £ (u?) = £7°(¢) (4.62)

Using Jensen procedure and an LMS method, the following nonlinear equation
can be obtained.

Muy, + hgC(un) + h3£™ (u,) = Mhj — hghy, — h3£(t) — g”

(4.63)
where g? is the force vector due to prescribed displacements
g’ = Mul, + hgC(ubh) + hjf™ (ub) (4.64)
or, when the equation is linear
g’ = Mu), + hgD(u}) + h3Ku}, (4.65)

The reduced system can be now solved for u/ as described above. Afterwards,
the correct displacement vector u must be recomposed. The velocities (and
accelerations) can now be calculated using with the total history vector h%,
according to the original LMS formula

u, — h}}

hﬂ (4.66)

a, =
Using this method, it is not necessary to evaluate the prescribed velocities by
differentiating the prescribed displacements. The total velocity vector can be
calculated using the total displacement vector.
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4.4.3 The General Procedure

Summarizing, the full procedure to come to the linear or nonlinear Jensen
equation is given in the table below stepwise.

2a.

2b.

10.

Linear:
Nonlinear:

if n=0,

Linear:

Nonlinear:

elseif n > 0,

Linear:

Nonlinear:

Solve for u,:

Linear:

Nonlinear:

If t < tax
else

endif

"fnfl = fo (tnfl) - fint(unfl)

Vo1 = £ (tnfl) —Ku,

vg = Mug + aMuy + GKuyg

vy = Mug + aMuy + S (ug)

V1 =hy_ | +hgvy,_y

hy =h Zizl Bivy, — Zi:l Q;Vyp

hy =h Zizl Bia, — Zi:l a;Up,

gn = Mh}} — hghyl — h3f ()

gn = (1 + hga)Mup, + hs(B + hg)Kup,

gh = (14 hga)Mul, + hs(8 + hg)f™ (uh)

(1 + ahg)M + hs(8 + hg)Klu, = g, — gh
(1 + ahg)Muy, + hg(8 + hp)f™(u,) = g, — &b
l'ln = (un - hrtzl)/hﬂ

Advance step number n =n+ 1 and time t =t + h

go to 1.

stop.

The nonlinear equation at step number 7 must be solved using iterative tech-
niques. These methods are discussed in the next section.
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4.4.4 Additional Calculations

Apart from the displacements, velocities and in the nonlinear case internal
forces some additional quantities can be calculated on request.

Kinetic Energy

In order to control the mode-jumping process (which will be discussed in the
next chapter), and to check the amount of numerical damping, the kinetic, and
strain energy can be calculated at each step. The total energy at a time ¢ can
be calculated using the following integral equation.

t
/ () [Mii(r) + Ca(r) + F(u(r); ]dr = 0 (4.67)
0

The kinetic energy and the strain energy are:

T

/l'l(T)Mii(T)dT (4.68)
0
t

a(7)f(u(r); t)dr (4.69)

S

Il
o\

e

The dissipated energy, a function of the damping matrix C is less important in
this case. Integration of these 2 terms gives

1

T = S8, Mu, (4.70)
1

U= iunf(un;tn) (4.71)

Accelerations

In the Jensen procedure, the accelerations are not calculated. In some occa-
sions however, the accelerations need to be known. Additional calculations are
required then.

There are three ways to calculate the accelerations. The first method is by
using the equation of motion. Since at the end of the calculations at a time
step 2 of the 3 unknowns in the equation are known (u,,0,) the third one i,
can be calculated using the equilibrium equations.

Mii, = —Ci,, — £ (u) + £ (£,,) (4.72)

This procedure is rather time consuming, since an extra system of equations
needs to be solved. When the mass matrix is semi-definite, which is possible in
some cases, this equation cannot be solved at all.

In order to reduce the amount of calculations, the acceleration can be cal-
culated just in the first time step ¢ = tg. The subsequent accelerations can
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be determined by extrapolation. This method is indeed less laborious but also
rather inaccurate, especially after a large number of time steps.

The third method that is as accurate as Jensen’s procedure and not very
complicated is based on the LMS scheme that is used to calculate the velocities.
The acceleration vector ii, can be calculated using a history vector that is based
on the velocities in the previous time steps.

i, + hl

» (4.73)

u, =
This method is fast and the estimated error of this procedure is of the same
order as of the calculation of the velocity vector.

4.5 Nonlinear Solution Techniques

The nonlinear equation derived in the previous section cannot be solved di-
rectly. Numerical methods should be used instead. In general, two classes of
methods for solving nonlinear equations are known, i.e. interpolation meth-
ods (method of bisection, false position method) and extrapolation methods
(Newton-Raphson method). The first class of methods is most often used for
single nonlinear equations since these methods are fast and very simple to im-
plement. System of equations need to be solved using extrapolation methods.
In this section we will take a closer look at extrapolation methods, Newton
Raphson methods in particular.

4.5.1 Single Degree of Freedom Systems

First the methods are derived for a single degree of freedom system. Doing so,
it is possible to explain the process by a simple graph. Later on, the methods
are adjusted for a multi degree of freedom system and applied to the current
equations.

Newton Raphson Method

An arbitrary nonlinear equation f(z) = 0 can be expanded into a Taylor series

in an initial guess z* close to the presumed root z*+1.
k+1 k 10,k Az* , k
f(@) = f(2") + Axf'(x )+Tf (") + H.O.T. (4.74)
where f' is the derivative of f with respect to z and Az = 2*¥T1 — 2%, Since

2F*1 is a presumed root of the function f(z), the equation above can be written

as
f**hH =0 (4.75)
After dropping the second order (and higher order) terms in the expansion

f(a®) + Azf'(@®) =0 (4.76)
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The increment Az can be calculated using the linearized equation

f'(eF) Az = f(a*) (4.77)

k+1

The new value z can now be calculated

of = 2F + Az (4.78)

The iteration must start at a appropriate point, z(®) close enough to the root®.
There are many methods to determine an appropriate initial guess (or predic-
tor). The iteration process must be continued until the residue of the function
f(x*) approaches zero, or when the increment Az approaches zero.

Modified Newton Raphson

The method described above is often called Full Newton Raphson: the tangent
of the equation, f'(z*), will be adjusted each iteration step. In some cases
when the tangent is assumed to change very slowly, it is possible to use the old
tangent f'(z%) for every subsequent iteration step.

k
0D — gk - SE) (4.79)
f'(20)
It is not surprising that in this case it can take more iteration steps before a
converged solution has been found. On the other hand, the tangent f'(z) only

has to be evaluated once in the iteration process. This aspect will be much
more important when these methods are applied to large systems of equations.

4.5.2 System of Equations

The analysis described in the previous section can easily be extended to a system
of N equations. Consider a nonlinear function f.

f(X) =0 Ry — Ry (480)

For every single equation fi, fo... fn a Taylor expansion series can be created.

k k k
A = £ + Az P 7 20 6 2D o
o1 o2 ornN

ety ! df2(x") df2(x") df2(x")
(4.81)

k k k
Fa(x) = fN(x’“)+Ax18fN(x ) 4 Az 20D A D Lo
0x1 0x2 Oxn

This equation can be written in a matrix form

f(xF1) = £f(x*) + HAx + H.O.T. (4.82)

It may be clear that this procedure will always find a root of the function. However,
nonlinear functions may have multiple roots, so that the right root is found as long as the
initial guess is close enough.
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where H is the Jacobian of the function f(x) and Ax is the incremental solution
vector, Ax = [Axy, Axy, ..., Ax,]t. The sequel of derivation is similar to the
single degree of freedom equation. The increment can be calculated using the
following formula

HAx = f(x) (4.83)

Of course again a distinction can be made between the full and the modified
Newton-Raphson method. In the first case the Jacobian H(x) changes at every
iteration step while in case of the modified method the Jacobian is constant
during the process. Before judging the performances of both these methods,
it is important to know a little about the numerical methods that are used to
solve system of equations.

All methods to solve the linear system of equations Ax = b are based on the
same principle. First the matrix A is decomposed (translated) into a number of
factorized matrices. The solution x can then be calculated directly using these
factorized matrices and the vector b. For example, the solver that is used in
the B2000 platform, uses a LDLT decomposition. The matrix is decomposed in
a triangular matrix L and a diagonal matrix D.

These decompositions of the matrix are by far the most laborious part of
the process. They can use up to 90% of the total solving time. However, as
long as the matrix remains unchanged, there is no need to decompose it again:
the old factorization matrices can still be used.

These considerations can be projected on the Newton Raphson methods.
When the full Newton method is used, the Jacobian must be constructed and
decomposed every iteration step. And although this method needs less steps
to converge, the gain of speed is immediately lost due to decomposing time. In
‘ordinary’ nonlinear equations of motion, the nonlinearities remain small and
the response of the structure is a rather smooth function. The modified method
is in this case much faster than the full Newton method. However, there are
cases that the full Newton method is preferred. For instance when there are
contact mechanisms used in the model: the response can be less smooth and the
full Newton method can be the only method that finds a converged solution.

4.6 Implementation in the Nonlinear Jensen Equation

The implementation of the iteration methods in the nonlinear Jensen equation
requires some additional investigations. First of all a suitable prediction method
must be sought. Furthermore, since the algorithm must be able to handle large
rotations, the correct update of the rotation vectors must also be taken into
account. Finally a suitable convergence criterium must be defined.

4.6.1 Prediction

The first step in the solution procedure is the determination of the predictor, a
point from which the actual iteration process can be started. There is just one
condition to this predictor: it needs to be in the neighborhood of the converged
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Figure 4.8: Prediction step and iteration process

solution. Although this requirement is rather vague (the solution is not known
beforehand), it can be used in this case.

The solution of the Jensen equation (u,;t) can be represented in a Ry
space: N degrees of freedom plus the time parameter t. The time parameter
t, of the new converged solution (u,;t,) is already known since this is the
described parameter. The condition stated above can be satisfied partly when
the predictor is on the auxiliary Ry surface at ¢,°, see figure (4.8). In principle,
there is a number of methods available to calculate the predictor. In this case
just two of these will be discussed.

The Euler method is a so-called explicit method. The predictor is calculated
regardless of the current state of the structure. Consider that the response of
the structure is known up to n — 1th step at ¢ = £, 1. In this point both u,,
and u,_; are known. With these solutions and the time-step h = t,, — t,,_1 the
next solution can be guessed using the following formula:

uffed =u,_1+ ha, 1 (484)

Note that the predictor can be calculated without solving a complete system of
equations.

Another way to calculate the predictor is using the original Newton Raphson
iteration procedure. In this implicit method, the predictor is calculated using
the original Jensen equation and the previous state variables u,_i, £, and
K, 1. When the predictor ub® is known, the iteration procedure can be
continued using either the full or the modified Newton Raphson method. In
this case the actual predictor is of course the previous solution u,, ;.

It is obvious that out of these two methods, the Euler prediction method is
by far the fastest one. However, when it comes to accuracy, the Newton method

This approach has many resemblances to the nonlinear iteration procedure as implemented
in the continuation macro-processor B2CONT. This processor is based on Riks’ path-following
technique and will be discussed in chapter 5.
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for calculating the predictor is preferred. Therefore, both methods have been
implemented in the transient processor.

4.6.2 Jensen Equation

Once the predictor has been calculated, the Newton iteration procedure can be
started. The first thing to do is the calculation of the Jacobian of the nonlinear
Jensen equation, recalling

(1 + ahg)Muy, + hg(B + hg)f™ (u,) = gn — g}, (4.55)
Since afi;;(u) = K(u), the Jacobian is equal to
H = (1 + ahg)M + hg(hg + B)K(u,) (4.85)

In terms of the Newton Raphson algorithm, the complete equation will look
like

HAu=r (4.86)

where the right-hand-side vector r (or residue vector), is the nonlinear Jensen
equation (4.55).
4.6.3 Compound Rotations

The incremental solution Au obtained by equation (4.86) must be added to the
(i-1)

previous solution in the iteration process u; ', according to
ul 4 Au=ul? (4.87)

(i—1)

The previous displacement uy, as well as the incremental array Au,, consist
of displacement and rotation increments. The 3 dimensional beam element as
well as the Simo type shell elements developed by G. Rebel [23] are able to
obtain large rotations. A correct update of these rotations is required. These
incremental rotations may not be added to the full rotation. A compound
rotation tensor must be used instead.

In section 3.2 the formulation of large rotations has been discussed as well
as the principle of compound rotations. In the derivation of the compound
rotation tensor, the following alternative rotation vector is used.

02 (4.88)

It is shown by Crisfield [3] that after algebraic manipulation the compound
rotation vector is equal to

A L 4 A L 4 A 1. 4
B1o =% (1= 1[16:])'/?61 + (1 — 1161])!/?62 — 61 %6, (4.89)
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The correct + sign follows from additional calculations [2]. In terms of the
Jensen equation, the rotation parts of the previous solution u(~! can be de-
noted as 91 and the rotational terms of the incremental vector Au as 92. The
rotational components of the updated solution u,(f ) are equal to 65"

The history vectors also contain summations of finite rotation components.
In this derivation, however, these terms are not added properly using compound
rotations. The resulting error can be neglected as long as the total rotations
remain moderately small, say in the order of # < 1 rad. This implies that the
capacities of the new beam elements as well as Rebel’s shell elements are not
fully utilized.

4.6.4 Converge Criteria

The sequence of iterations on the Newton Raphson process must be continued
k is close enough
to the exact solution u,. Close enough is defined by the following convergence

criterion

until the numerical solution of the Jensen equation in step n, u

|Au|| < €qisplup—1]] (4.90)
and
[1Enl] < €cesl ]| (4.91)

In the first equation is ||u,—_1|| the norm of the converged displacement vector
in the previous time-step. In the second one is ||f,|| a force vector with the
following value

) 1= (ta) i [l > 0
Eall=4 (4.92)
e )| (£ ()] =0

If all these vectors are null-vectors, for instance in the first step of the time
integration process at t = t;, an arbitrary value can be used instead. The
terms €4, and €., are the so-called error factors. Normally both factors are
chosen very small (in the order of 1073 and smaller).

4.6.5 Time Step Control

As long as the finite element model is defined correctly and the time step is
small enough to calculate at least the basetones of the structure, the iterative
Newton procedure is able to obtain converged solutions without any difficulties.
In some occasions however, there can be problems finding a converged solutions.
The only variable that can be changed, without losing accuracy is the time-step
h. A smaller time-step can lead to faster convergence. This procedure is often
called time-step cutting. It must be done in two cases

"This algorithm is also implemented in the continuation macro-processor B2CONT by G.
Rebel.
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e The number of iterations exceeds a predefined number of maximum iter-
ations, i.e. it takes too long before a converged solution is obtained.

e The Jacobian, H which is equivalent to the dynamic stiffness matrix E,
equation (4.50), is no longer positive definite (negative roots occur on the
diagonal of H).

By the authors knowledge, there is no such method that can be used to calculate
a new, optimal time-step by evaluating the current iteration process. An ad-hoc
approach is used instead.

The problem with cutting the time step in this case (time integration using
Park’s LMS scheme) is that after each cut, the procedure must be restarted
with the less optimal 1- and 2-step method. It is therefore important to be
careful in cutting the time-step. Cutting methods that adapt the time step
constantly (as is implemented in the continuation procedure) are not suitable
in this application. A less complicated procedure is used instead, which just
splits the time-step in the critical cases mentioned above.

1
Poew = 501 (4.93)
2
It can be possible that after a while, the number of iterations per time-steps
decreases. In that case the time-step can be re-enlarged. As an upper bound
for the maximum time-step h;,;, the initial time-step can be used.

4.7 Closure

The implicit time integration method as described in this chapter is imple-
mented in the B2000 platform as a new macro-processor B2TRANS. It can be
used in combination with all other macro-processors like B2LIN, B2BUCK and
B2CONT. A number of numerical examples to prove the reliability of this new
macro-processor is presented in chapter 6. The users manual is given in sec-
tion A.2. In appendix B a short description of the syntaxis is igven. Also the
implementation of existing processors such as the nonlinear element processor
B2EPN is discussed. A summary of all source fiules can be found in appendix C.



The Mode-jumping
Phenomenon

The term mode jumping is often used to describe sudden dynamic changes in a
static process. In computational mechanics, the abrupt change in wave numbers
in a buckling process is indicated as a mode jump. This phenomenon was first
mentioned by M. Stein [31] when describing a buckling experiment on a flat
panel. A specimen as shown in figure 5.1a was loaded with an end shortening,
in order to determine its limit load. However, after it had buckled, Stein noticed
changes (jumps) in the wave number from 5 via 6 and 7 to 8 half waves. The
load versus end-shortening diagram was of the type shown in figure 5.1b. The
jumps in the figure are represented by the vertical lines where the internal force
decreases for equal end-shortening.

The observed phenomena were analyzed and interpreted by several people
in the years after. In their opinion, the answer to this problem should be sought
in the stability of the buckling modes. In general when a structure buckles, the
equilibrium state can become unstable'. When the structure enters such an
unstable part of this post-buckling trajectory it will move away to the nearest
stable equilibrium. This motion, the jump from one mode to another, attends
large velocities and accelerations and is therefore a transient, dynamic process.

In the years that followed many people tried to simulate such jumps. In
FEM analysis this can be done with a transient solving routine, as developed in
the previous section. The pre-buckling state, before the unstable configuration
has been reached, can be calculated with a path-following technique. At this
stage, the velocities and accelerations are neglected. Just before the unstable
path has will be entered, the calculations can be continued with the transient
processor. When a new stable static equilibrium is found,i.e. when the structure

!The term stability has a different meaning in this context. In the previous chapter,
the word stability was used to describe the ability of a time integration method to produce
converged results over a number of time-steps. In this case, stability is used in combination
with the ability of the structure to remain its current deformation. A more precise explanation
will be given in section (5.1.3).
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(a) (b)

Figure 5.1: Stein’s buckling experiment and load displacement relation.

is at rest, the path-following method can be restarted.

In this chapter a closer look will be taken at the mode-jumping phenomenon
in general and the numerical aspects of the process in particular. The papers by
Riks et al. [25, 27, 28] are used in these considerations. Apart from the transient
part of the solution, the quasi-static part of the calculations is examined as well
as the concept of loss of stability.

5.1 The Quasi-Static Solution

When the loads are applied slowly to the structure, the equations governing
the equilibrium of motion, equation (4.1), can be reduced to a system of static
equilibrium equations by omitting the inertia and the damping forces. This is
allowed since in a slow deformation process the accelerations and velocities are
assumed to be small.

f(u;\) =0 (5.1)

In this equation the load factor is denoted by A, which determines the magnitude
of the external forces or prescribed displacements. Again, a distinction can be
made between the internal and the external forces

f(u; \) = £ (u) — £(\) = 0 (5.2)

The static equilibrium equation describes the deformation of a structure under
an arbitrary load. Due to the geometric nonlinearities, deformations due to
large load factors can not be calculated in one step, but have to be determined
in more steps, with increasing load factors. Doing so, a one dimensional curve
in the space Ry41 spanned by u and A can be obtained, figure 5.2.

This load-displacement curve seems to be a history plot of a deformation
process, which of course it is not?. It is just a collection of static equilibrium

2The load displacement curve approaches a time history plot when the specific time is said
to be infinite, for example when the loads are applied to the structure very slowly.
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Figure 5.2: An example of a load-displacement curve in the Ry 1 space

points connected by a line. However, because of its resemblance to a time plot,
this solution is often called a quasi-static response of a structure.

The nonlinear equilibrium equation (5.1) is a system of N equations, where
N is the total number of degrees of freedom of the discrete structure. Unfortu-
nately, there are N + 1 unknowns. These are the N-dimensional displacement
vector u and the scalar load-factor A. The system is therefore undetermined.
It can only be solved when the number of unknowns is equal to the number of
equations.

One way to solve the system of equations is to reduce the number of un-
knowns to N by selecting one unknown as a constant or the so-called path
parameter. It is possible to choose either the load-factor A or one element in
the displacement vector u. In the first case, A is used as a prescribed variable
(denoted by the path parameter n) which is held constant at its value in the it-
eration process in which the corresponding displacements are calculated. This
procedure is better known as the incremental load procedure. In the second
case, the displacements fulfill the role of path parameter and is therefore called
an incremental displacement procedure. From figure (5.3) can be concluded
that both procedures can have difficulties. The incremental load procedure
cannot pass the limit point A, the incremental displacement method will not
pass the turning point B.

5.1.1 Riks’ Path Following Technique

Instead of reducing the number of unknowns to N, the number of equations
can be increased to N+1 by adding a new equation f* : Ry;; — R; to the
system (5.1). A new path parameter 7 is also included in this equation. The
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Figure 5.3: The incremental load procedure (a) and the incremental displace-
ment procedure (b)

new, augmented system of equations can be written as

f= [ff((:’k/\,)n)] =0 f:Ryi1 — Ryyi (5.3)

The new equation can be chosen freely, as long as it is independent of all
equations in (5.1).

The first and by far the most simple choice that will be discussed is the load
parameter A as path parameter 1. The equation f* can be written as

f* =1—Nn-1= A — >\n—1 =0 (5.4)

where A, 1 is the load factor of the converged solution of the previous time
step. It needs no proof that this equation is independent of the system of
equations. In principle, this method is equal to the incremental load procedure
as described before and can therefore not be used to evaluate limit points. It
may be clear that there is also an alternative function f* that is related to the
incremental displacement procedure.

Another choice for the additional function is based on the principle of adap-
tive parameterization. Instead of using either the load factor or a displacement
as the parameter, it can be useful to adapt the parameter to the properties
of the solution path. A very primitive form of adaptive parameterization is a
so-called mixed procedure, figure 5.4. In this procedure the path parameter
switches between the load factor A and a displacement u, depending on the
direction of the path.

The path parameter can also be chosen in such a way that it is at any point
tangential to the path. Riks [25] derived the following additional equation

= nT(u —up-1)—n=0 (5.5)

where n”' is the so-called base-vector, which denotes the direction in which
the new equilibrium (u, A) is sought. There are no restrictions to this vector

whatsoever.
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Figure 5.4: Mixed parameter procedure
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Figure 5.5: Arc-length procedure

It may be clear that this method produces the best results when the auxiliary
surface is perpendicular to the path. This means that the director in equation
(5.5) must be tangential to the path.

du(n)

n=u = dn |n=m1 (5.6)
The additional function can than be written as
. du(n
pr= ) < g = B ) 7 =0 5.7

where h(u, ) is the so-called function for the auxiliary surface. The solution
of the augmented system as presented in equation (5.3) is on this surface and
can be found iteratively by using nonlinear solution techniques.

5.1.2 Possible Solutions

Although the path can be calculated completely using this technique, it is still
important to discuss the properties of the solution of equation (5.4). In general,
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Figure 5.6: A bifurcation point, a crossing of two equilibrium paths

there are two types of points on the path with very special geometrical proper-
ties that need extra attention. The first one, which has already been mentioned,
is the limit point, point A in figure 5.3a. This singularity is solved by the intro-
duction of the additional equation. The other group of special points is formed
by bifurcation points. A bifurcation point is a point on the primary path that
is also an equilibrium of a different, secondary path, figure 5.6. By definition
bifurcation points always have loss of stability as a result.

Limit Points

On a limit point (or stationary point), the director of the path parameter is
horizontal, or X'(n) = 0. The load parameter has reached a maximum3. When
the path crosses such a limit point, the structure can loose stability. If so, these
points are called proper limit points in the sense of the stability theory. The
mathematical formulation of stability will be explained in the next section.

The loss of stability of limit points in reality can be explained as follows.
Consider a structure , for example a cylindrical shell, which is clamped at one
end and compressed by a uniform load on the other end. At a certain moment
the exact limit point is reached. In this configuration (u;m; Aim) the path can
only be continued when the applied load is decreased. But, decreasing the
load factor will imply a relaxation of the shell and the path will be followed
backwards, in the wrong direction. The path cannot be continued in reality,
which indicates the presence of instability.

Bifurcation Points

As opposed limit points, the crossing of bifurcation points is not shown be the
load-displacement curve. The steps are normally too big and the direction of
the path is preset by the previous equilibriums. Analysis of the the condition
of the stiffness matrix must give a definite answer to the question how much
bifurcation points have been passed.

3The director is also horizontal in a minimum of a saddle-point. Although these points
also occur in stability analyses, they will not be discussed here.
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Figure 5.7: Elementary forms of loss of stability

At first sight, there are not many similarities between limit points and bi-
furcation points, but this is wrong. In reality, bifurcation points always occur
as limit points. Due to initial imperfections in either the material boundary
conditions or the geometry of the structure. The actual path will not be exact
on the mathematical equilibrium path. Near a bifurcation point, the real path
can also be attracted by the secondary path. In most case the path will follow
this path, as can be seen in figure 5.8, with a limit point as a result. This prin-
ciple is also used in FEM analyses to visualize bifurcation points. The initial
imperfections are often simulated by small nodal forces.

5.1.3 Stability Analysis

As said in the previous section: the buckling path can become unstable after
passing a limit point or bifurcation point. But what is stability? The answer to
this question will be given in this section according to two criteria, the energy
criterion and the slightly different Lyapunov criterion.

The energy criterion states that if the potential energy of the structure at
the equilibrium state is a proper minimum, the equilibrium is stable. If this
property does not exist, the equilibrium is unstable. More specific, a given
equilibrium state (u; ) is stable if and only if the potential energy P(u;\)
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Figure 5.8: Limit point of a perturbed structure

satisfies
P(u+du;\) — P(u; M) >0 Vou € Ry (5.8)

The incremental displacement is assumed to be finite but small, 0 < ||du|| < €2.
If the inequality (5.8) is not satisfied, the equilibrium configuration (u;\) is
unstable. The energy criterion can be expanded as a Taylor series, assuming
that the equation of the potential energy can be differentiated infinitely.

OP(u; \) Su 4 19P%(u;))

Pu+du;\) — P(u;A) = I 5 fudn

oudu + H.O.T.
(5.9)

Since (u; \) is an equilibrium state, the first term is equal to zero. The leading
term becomes therefore the second variation of the total energy with respect to
du. As derived in chapter 2, the total energy differentiated to the displacement
twice is equal to the stiffness of the structure.

OP?%(u; \)

e (DY (5.10)

The second variation of the total energy is therefore

B 18P2(u; A)

[Ty(0u) = 2  Judu

dudu = %5utK(u; A)du (5.11)

It can now be shown that the minimum of P(u;A) and thus stability of the
configuration (u; A) is ensured if the second variation of the potential energy is
positive definite:

Iy (du) > 0 (5.12)

This equation implies that for all possible perturbations du the second variation
is > 0. The quadratic form is called indefinite if there are some perturbation
vectors thinkable for which the second variation is smaller than 0, i.e.

I, (6u) < 0. (5.13)
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the quadratic form is called indefinite. The potential energy is not a minimum
and the equilibrium is unstable. A borderline case occurs when the quadratic
form is semi-positive definite, when for some du the second variation is equal
to 0.

I (0u) >0 (5.14)

Limit and bifurcation points where the path changes from stable into unstable
are characterized by these points. Following criterion (5.12) in combination with
equation (5.10) the potential energy is a proper minimum if the stiffness matrix
K is positive definite. In practice, the stiffness matrix does not have any neg-
ative roots on the diagonal of the factored matrix. Since in the path-following
method the stiffness matrix needs to be factored each step, the stability can be
evaluated by checking the condition of the factorized stiffness matrix.

Lyapunov’s criterion is equivalent to the energy criterion, but since it also
refers to the dynamic behavior of the structure, it is worth while mentioning it.
Consider a deformed structure at rest that is disturbed by a small perturbation.
If the incipient motion grows without bounds, independent how small the initial
disturbances are taken, the equilibrium is declared unstable. When for these
small perturbations the motion remains bounded or damped, the equilibrium
is called stable. Apparently, when an equilibrium is unstable it will move away
from this equilibrium coupled with large accelerations and velocities. This be-
havior can be simulated with the transient algorithm developed in the previous
chapter.

5.2 The Transient Solution

When the solutions of the path in the static domain have become unstable, after
crossing a limit- or bifurcation point, the analysis must be continued using the
transient solver in order to calculate the jump to a new stable path. One of the
most important aspects is the correct initialization of the transient process. The
choice of the initial conditions determine the direction in which the structure
will jump. Control parameters such as the time step h and the amount of
damping are other important features that make sure that the jump ends at
the correct stable path in a proper way.

5.2.1 Initial Values

The critical points where mode-jumping occurs are either limit points or unsta-
ble bifurcation points, where the equilibrium on the path changes from stable
to unstable. In figure (5.9) this transition from the stable trajectory occurs at
point A. The unstable path is denoted with a dashed line.

In principle, these critical points are not known beforehand. A limit point
is marked by a maximum in the load displacement curve and a change in the
condition of the stiffness matrix K. Bifurcation points can only be identified
by evaluating the stiffness matrix at every step. In the continuing the mode-
jumping of limit points will be discussed, since in practice, pure bifurcations



108 5. THE MODE-JUMPING PHENOMENON

274 stable path

15t stable path dynamic jump

Figure 5.9: The mode-jumping process

are a rarity and can always be changed into a limit point singularity by adding
an imperfection to the model.

The transient process is affected by three variables, i.e. the initial conditions
up and 0y and the load factor A that is now time dependent and determines
the value of either external loads £f*** or the prescribed displacements.

The first and most natural way to start the transient process is by using
the last stable equilibrium on the primary path (ug, As). The subscript s means
that this is a solution of the quasi-static equation. The initial displacement of
the transient process at ¢ = ¢y can be chosen equal to the last stable solution:
ug(to) = us. The load factor can be prescribed in such a way that it starts at
the level A\; at ¢ = ¢y, and increases monotonously to a level \; according to
At) = As + %t. In this case % is the increase of the load-factor per unit of
time. Within the time domain in which the complete jump must proceed, the

load-factor must exceed the limit load of this stable path.
Ad(t) > >\1imit t < tend (515)

Since the jump will start from a static equilibrium, the initial velocity 1y can
be chosen equal to 0.

As long as the load factor is smaller than A, the transient analysis will
behave like a quasi static analysis: the velocities and accelerations remain small.
As soon as A exceeds the limit load, the character of the process becomes more
and more dynamic. The kinetic energy that was almost equal to zero increases
and the structure moves away from the static branch rapidly. When the new
stable path has been reached, the kinetic energy will dissipate and the structure
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will come at rest again. From here the continuation analysis can be restarted.

The method described above is undoubtedly the best way to simulate the
jump, but not the most convenient one. Since the exact value of the limit load
Alim 18 not known, it can take a long time before the load factor passes the limit
value and the actual jump begins. The calculations that have been done so far
can be considered wasted. Up to the limit point, the much faster continuation
method can be used instead.

A jump can also be initiated using the Lyapunov’s criterion. This criterion
states that when an unstable solution is perturbated, the jump will be initiated.
It can be shown that it is not possible to use an unstable static equilibrium to
start the transient calculations. However, the perturbation of a stable equilib-
rium into the unstable area will give the same results. Again the last stable
equilibrium (ug, As) will be used. By changing the load-factor A, this equilib-
rium can be perturbed into the unstable area. The only condition is that the
Aq(t) is significantly larger than the limit load Ay,,. In principle A4(t) can be
kept constant during the jump. This method will produce results very fast.
Immediately after starting the transient calculation, the dynamic behavior (the
increase of kinetic energy) will be visible.

In some cases, especially in shell structures, the limit or bifurcation point
happens to be a knot in which more second branches are involved. In the
methods above the direction in which the jump proceeds (which second branch
will be followed) is completely arbitrary. In order to have full control in which
direction the structure will jump, the need for an improved method arose.

The buckling modes and corresponding critical loads can be calculated by
an eigenvalue analysis. In B2000 this analysis is implemented in the macro-
processor B2BUCK. This processor determines the buckling eigenvalues according
to the undeformed state, u = 0. It is better to perform this analysis using the
last stable solution u, as a starting point? One of the obtained eigenmodes a;
can be used to define the initial displacement of the transient analysis. Since
the eigenmodes or often presented as normalized vectors, the must be multiplied
by a scaling parameter p first. The initial displacement can thus be written as

ug(to) = u, + pa (5.16)

The external load parameter \;(¢) must be higher than the corresponding eigen-
value A;. In order to give the jump an additional boost in the right direction it
is possible to use initial velocities. The velocities are also based on the eigenvec-
tor of the corresponding buckling mode, say 04(ty) = ea where € is a arbitrary
small number.

Because the static equilibrium is perturbed, inertia and damping forces
(accelerations and velocities) are needed to restore the dynamic equilibrium.
This will start the jump motion. Since the deformation on the current path
corresponding the load factor A4 is not stable, the structure will move to another
(second) stable path with the equilibrium (u?; \;), figure 5.9.

*This solution procedure used to be a part of the B2CONT package. For reasons not known
by the author, this feature has disappeared from the code. Eigenvalues analyses can only be
done using a undeformed structure.
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ug(to) U4 (to) At)
Classical method ug 0 As + At
Fast method u, 0 As + A
Improved fast method u; + pa €a As + A

Table 5.1: Initial conditions and load factor for initiation of mode jump

5.2.2 Damping

In principle, the transient analysis of a structure is undamped when the Rayleigh
coefficients « and 8 are equal to zero. Of course there is a small amount of
numerical damping introduced by Park’s method, but this amount can be ne-
glected, especially when the time-step is small enough. As a consequence of
this, the total kinetic energy during the transition will hardly decay. It can
take an enormous amount of time steps before the iteration comes to a rest
in the new stable branch. Furthermore, the dynamic response can become so
violate, that the first stable branch can be missed and the structure reaches a
next stable path. This phenomenon is called overshooting.

So far, damping must be simulated using Rayleigh damping. In order to
obtain a realistic damping behavior of the structure, the constants « and
should be chosen so that the damping is under-damped. Recalling equation
(4.28).

o+ Bwl = 2wig (5.17)

This equation describes the connection between the eigenfrequency and damp-
ing ratio of the structure and the Rayleigh constants. Unfortunately, the two
constants cannot be determined from this single equation. An additional re-
lation must be formulated first. There is a number of methods to do so, 2 of
them will be discussed here.

The best way to determine o and (3 is to describe the relation using another
eigenfrequency, for instance, the second dominant frequency. This results in
the following system of 2 equations.

a+ fuw? = 2w

2 (5.18)

o+ BwQ = 2&)252
In principle, two different damping ratio’s £; and &2 can be inserted in this
equation. The best results are obtained when the damping ratio to the first
eigenfrequency is smaller than the damping ratio of the second one, i.e. £ < &9,
but two identical ratio’s can be used as well, £&; = €. In this case, the ratio’s
are

25(4)1(4)2 25
o= :

= : = 5.19
w1 + w2 b w1 + w2 ( )

Another way to introduce a second equation is the demand that the influence
of both the mass and the stiffness matrix to the damping must be equal, which
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results in the following system.

a+ Buw? = 2w
B 9 : (5.20)
a—pPw” =0
The answer to this system can be calculated immediately.
a=¢w b= g (5.21)
w

The natural frequencies of a structure can be calculated using a linear dy-
namic eigenvalue analysis method, which has already been implemented in the
B2000 platform as the macro-processor B2LIN [16]. This analysis can be done
before the buckling analysis, on the undeformed structure. Appropriate values
for the damping constant ¢ to simulate an under-damped vibration are in the
range of 0.05 < £ < 0.2.

5.2.3 The Second Stable Path

It can be shown [28] that when damping is applied to the model, the kinetic
energy will decrease during the transient process. When the kinetic energy
approaches zero, this is an indication that the transient analysis has reached
a new static stable path. When the kinetic energy T satisfies the following
condition

T < ep (5.22)

the structure can said to be in rest. In reality, the structure is vibrating around
the static solution of the second branch, point B in figure (5.9). The choice
of the right ey is an enigma. As a rule of thumb this small constant can be
chosen as ey = 1073T},,4x where T}, is the maximum kinetic energy during
the transition, most likely reached after a few steps in the integration process.

5.2.4 Restarting the Continuation Method

The configuration of the ‘construction at rest’ obtained by the transient analysis
can be used to restart the continuation analysis in order to calculate the next
stable path. Since the transient analysis was stopped when the kinetic energy
was not exactly equal to zero, there will be small velocities and accelerations.
The displacement vector at this time u? is therefore not a static solution.

The next aim is to find the corresponding static solution on the second
path u?. A good restart relies on two things. First the dynamic solution u;
must be close enough to the quasi-static path to serve as a predictor in the
continuation analysis. When the dynamic solution is not in the domain of
convergence around the static solution u?, convergence can not be guaranteed.
Secondly, the static solution must be stable, that is the stiffness matrix K(u?)
must be positive definite.

As soon as the first point on the secondary path is calculated, the remainder
of the path can be followed using the normal continuation routine. When this
path becomes instable, the exercise must be repeated from the beginning in

order to reach the third path.
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5.3 Closure

In this chapter, a strategy to calculate the post buckling behavior of struc-
tures is presented. The strategy is completely based on two solution methods.
The quasi-static continuation method is used to calculate the behavior of the
structure in static stable conditions. The sudden, dynamic jump towards a
new static stable equilibrium is calculated with a transient solution method.
This last method is based on the nonlinear equations of motion which is the
most accurate and complete model for the description of mechanical response
of structures.

In principle, the complete behavior of the structure under loading can be
calculated using the transient method instead of switching from the continu-
ation method to the transient method and back. When the load factor A is
increased very slowly in the time domain, the transient method approaches the
continuation method. This way, it is impossible to find unstable solutions: the
transient algorithm will automatically jump to the new ‘stable’ path and con-
tinue its analysis. The post-buckling behavior of a structure will be calculated
more naturally.

In spite of these advantages, this ‘all-transient’ method is not recommended
to calculate post-buckling behavior. A number of reasons can be presented for
the benefit of the ‘mixed method’.

Compared to the transient method, the path-following method (quasi-static
solution) is much faster for the computation of static equilibrium deformations.
It is possible to walk down the path taking large steps. Regardless of the step
size, the calculated path is always exact. Unfortunately it is impossible to take
these large steps when the path is calculated using the transient method. The
most important reason is that the load-factor A is a function of time. The
progress of time is denoted by the constant step-size h. During the process
, the rate of increase of the load factor cannot easily be changed. When the
load-factor as a function of time increases too fast, some uncontrollable dy-
namic phenomena such as overshooting can occur. When the time-step h is too
large, the results become less accurate due to an enormous amount of numerical
damping.

It is rather difficult to create a finite element model with loading patterns
and initial conditions, that will simulate the exact dynamic behavior. Small
disturbances in the initial conditions or loading will result in rather large devi-
ations, certainly when many time-steps are required to calculate the dynamic
response accurately. The transient method allows the user to simulate dynamic
behavior rather than analyze the buckling properties of the structure. The re-
sults obtained with the quasi-static method may be not very close to reality,
they tell a lot about the structures buckling behavior in general. Both methods
can be very useful but their capabilities may not be overestimated.



Numerical Examples

The performances of the beam elements and the transient iteration method
developed in the previous chapters are shown using a number of testcases. Most
of them are obtained from the papers which have been used in the derivations
of the theories. Some of them can be denoted classic: they appear in almost
every publication about this subject and are therefore essential in a numerical
evaluation.

Most of the examples, except from the enormous mode-jumping analyses,
are rather simple. Recalculation of the results only takes a few minutes. For
this reason, the can perfectly be used to validate the elements and the processor
in the future, when new features have been added. They will be enclosed in the
database of testcases in B2TEST macro-processor.

6.1 Nonlinear Beam Elements

Some specific element types can be validated with a number of prescribed test
series. For example, the MacNeal-Harder series contains a number of tests to
validate nonlinear shell elements and their drill rotation problems in particu-
lar. Unfortunately there are no such tests for nonlinear beam elements. The
testcases presented in this section are made up by the author or collected from
various articles and cover almost all applications of geometrically nonlinear
beam elements.

First a set of linear deflection tests is executed to test the reliability of
the elements in linear analyses. The tip displacements of a number of beam
structures is compared to analytical solutions, the existing linear beam element
B2.EP and the Rebel shell element Q4N.REBEL. Linear dynamic eigenvalues cal-
culations are done as well.

The performances of the element in nonlinear analysis are tested with the
continuation routine B2CONT and the linear buckling analysis processor B2BUCK.
The capacities in buckling and bifurcation point analysis have extra attention.
The results are compared to the beams’ slenderness ratios in order to find out
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Figure 6.1: Plane beam structure for linear deflection test

Roark B2 B2.EP B2.EP+ B2.NL Q4N.REBEL
U 3.346 3.348 3.346 3.346 3.333 3.336
v -2.500 -2.500 -2.500 -2.500 2.500 -2.520
0 -0.075 -0.075 -0.075 -0.075 -0.075 -0.075

Table 6.1: Deflections and rotation of plane beam structure under discrete force

in which regions of slenderness the beams are still reliable.

6.1.1 Linear Deflection Test

In the first test, a plane beam structure is presented, 6.1. The two bars (a and
b) have different lengths and cross sectional variables. The structure is made of
an isotropic elastic material with Young’s modulus E = 2.0 - 10* N/mm? and
Poisson’s ratio p = 0.3. At one end, the beam is fully clamped, at the other
end a nodal force is applied with a magnitude of 100 V. The model is made
of 6 beam elements, each of them 25 mm long. All available beam elements,
including the linear beam element B2 have been tested in this case. In order
to calculate the tip displacements considering shear deformation, this simple
beam structure is also modeled with Q4N.REBEL shell elements.

The deflections u and v of the tip, as well as its rotation 6 can be calculated
analytically with the ‘slope and deflection formulas for straight elastic beams’
(the vergeet-me-nietjes in Dutch) as presented in Roark’s Formulas for Stress
& Strain [35]. The analytical solutions and the numerical results can be found
in table 6.1.

It can be seen that the new plane beam elements B2 .EP and B2 .EP+ perfectly
prescribe the displacements and tip deflections. This is not surprising, since the
analytical beam deflection formulas are based on the principle that excludes
shear deformation, in this perspective equal to the Bernoulli hypothesis. This
is also the reason that the wu-deflection of the 3-dimensional nonlinear beam
B2.NL does not match the analytical estimation. The Bernoulli hypothesis is
not used in the development of this element which makes it somewhat stiffer for
lateral displacements. Analytical estimations of the deflections of such beams
including shear deformations are not available so that an alternative way to
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A, = 40 mm?
Ay = 20 mm?
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I. = 200 mm*

Figure 6.2: Three dimensional beam structure for linear deflection test

Roark B2 B2.NL
U 7.650 7.649 7.613
v -1.250 -1.250 -1.250
w -1.875 -1.875 -1.875
0, 0.000 0.000 0.000
0y 0.000 0.000 0.082
0, -0.038 -0.038 -0.038

Table 6.2: Deflections and rotation of 2-dimensional beam structure under dis-
crete force

check the validity of the B2.NL element must be sought. Shear deformation is
also included in the Q4N.REBEL shell element and is the best element to compare
the beam element with. It is therefore not surprising that the w deflections of
both elements are almost identical.

The out-of-plane deformations of the 3-dimensional beam element B2.NL is
tested with an extended version of the previous case. Due to the addition of
an out-of-plane bar c the torsional stiffness of the beams participates in the
tip-deflection as well, as can be seen in figure 6.2. The material parameters
E and v are the same as in the previous case. The moment of gyration J is
assumed to be equal to two times the moment of inertia, J = 2. The analytical
solutions and the numerical results can be found in table 6.2.

Again, the deflections of the 3-dimensional nonlinear beam element are quite
good compared to the analytical results and the linear element B2, Apart from
the previously mentioned deviation due to shear deformation, the results are
almost identical.

The performances of the mass description is tested by a linear dynamical
eigenvalue analysis. The first three eigenfrequencies of both frames are calcu-
lated with the macro-processor B2LIN. The mass density of the material in both
frames is assumed to be p = 0.001 kg/mm3. There are no numerical results

available so that the results can only be compared to the existing linear beam
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freq. B2 B2[LD] B2.EP B2.EP+ B2.NL Q4.REBEL
2D model 1  0.5923 0.590 0.594 0.594 0.591 0.594

2 2.2472 2.224 2.280 2.280 2.235 2.245
3 5.2676 5.221 5.570 5.570 9.285 5.361
3D model 1 0.102 0.101 - - 0.1012 -
2 0.107 0.106 - - 0.1063 -
3 0.234 0.231 - - 0.2359 -

Table 6.3: The first three eigenfrequencies [Hz| of the 2 beam models using
different beam elements

F

<—_
S A
g

Y

Figure 6.3: Cantilever beam under both a transverse load and a bending mo-
ment

element B2. This element is equipped with two descriptions for the mass: a
consistent mass matrix and a lumped diagonal one. Both are used in this test.
Furthermore, new models have been made. Instead of the somewhat long ele-
ments (25 mm), smaller elements (10 mm) are used instead. The result of the
analyses are shown in table 6.3. It is not surprising that the performances of
the reduced lumped diagonal mass matrix are somewhat behind. The eigenfre-
quencies of all 4 elements (B2.EP,B2.EP+B2.NL and Q4N.REBEL) in most case
too high compared to the eigenfrequencies of the old B2 element. This is a
result of the absence of mass inertia. The mass is not divided properly over all
the degrees of freedom.

6.1.2 Large Deflection of a Cantilever Beam

In this simple example, the general quasi-static nonlinear behavior of the beam
elements in large deformations is tested. The test is obtained from a paper by
Eriksson and Pacoste [5]. A cantilever beam as shown in figure 6.3 is loaded at
the tip with either a transverse load or a bending moment. The length of the
beam is [ = 100, the beam cross section properties are A = 0.6 and I = 0.018.
Young’s modulus is £ = 1.0-108. The beam is modeled using 4 beam elements
of uniform length. On the left-hand-side, all displacements and rotations are
locked. The applied unit force is 1000, the unit moment 10000. The initial load
factor A which is used to start the continuation process is 0.001 in both cases.
The figures 6.4 and 6.5 show the tip deflection of the beam under force and
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Figure 6.4: Tip displacements u and w of the cantilever beam under transverse
load.

moment load respectively.

The performances of the two 2-dimensional beam elements B2 .EP and B2 .EP+
are almost identical. The results are the same as presented in literature. It
can be concluded that the error due to the simplification of the curvature is
very small in this case. The choice to model the curvature this way in the
3-dimensional beam element is hence justified.

The 3-dimensional element B2.NL is also subjected to this test. Unfortu-
nately due to the problems sketched in the section 3.7, the results were rather
poor. Just the almost linear part of the path could be calculated, up to a
load-factor A = 0.05.

6.1.3 Pure Bending of a Cantilever Beam under a Moment Load

A classical example to prove the beam’s ability to rotate over 180° is the follow-
ing case obtained from an article by Simo and Vu-Quoc [29]. A straight beam of
unit length L = 1 and bending stiffness EI = 2 is subjected to a concentrated
end moment M, figure 6.6. The beam’s cross section is, in this academic case,
infinitely large, say 1000. The model is made of 20 beam elements of uniform
length. The exact analytical solution to this problem is known. The beam is
completely rolled up when the applied moment is 47; when the applied moment
is 87 the beam is rolled up twice. The 2-dimensional beam element with Tim-
oshenko curvature (B2.EP+) is subjected to this test. The results are shown in
figure 6.7.

It can be seen that the results matches the analytical solution quite well,
except for the last part, where 6,;, > 5.0 rad. This is a result of the simplified
elastic rotation 6, in the strain energy expression, equation (2.42). The simpli-
fication holds for small angles .. In this case, the cantilever beam is uniformly
bent and the elastic rotation of each element is equal to 6, ~ 5.0/20 = 0.25 rad
which is equal to 14°. This angle is indeed to large to be evaluated by a Taylor
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80

Figure 6.5: Tip displacements u and w of the cantilever beam under moment
load.

Figure 6.6: Cantilever beam subjected to an extreme tip moment

expansion series of the first degree. The same case is also calculated with 10
elements of uniform length. Unfortunately it was not possible to roll up the
beam completely.

6.1.4 Euler Buckling at Different Slendernesses

Buckling behavior of beams is one of the classical mechanic subjects. A first
analytical solution has been found by Euler. In his derivation the beam is
assumed to be very slender, i.e. the radius of gyration r = /I/A over the
length of the beam [ is small, approaches 0. Since the beam developed in this
thesis is assumed to be slender as well, it must be can be compared to Euler’s
theories. In this case, the buckling stiffnesses are compared to the slenderness
of the beam in order to check in which regions the results are reliable.
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Figure 6.7: Tip rotation of cantilever beam under extreme moment

A Hinged Euler Strut

A cantilever beam shown in figure 6.8 is investigated. The length [ is 100, its
moment of inertia I = 0.018. The cross section A can be varied. The beam is
made of an isotropic material with Young’s modulus E = 10%. A compressive
force N is applied at the end of the beam. Using Euler formula, the critical
load can be calculated by

EI
Nep = 7T2l_2
In this case the critical load will be N = 1776.53.

N

- =
B [ .|

T

Figure 6.8: A simply supported Euler strut

The finite element model of the beam is made of 10 elements of equal length.
The displacement in z- and y-direction of the unloaded end are locked, as well
as the displacement in y-direction of the loaded end. In order to avoid rigid
body modes, the rotation of the midpoint of the beam is locked too.

The critical loads are calculated using the B2000 buckling analysis macro-
processor (B2BUCK). Both 2-dimensional elements are used. Different values for
the cross section area are used to obtain different slendernesses.

A Clamped Euler Strut

In this case, both ends of the beam are clamped, figure 6.9. All dimensions
and material constants of the strut are equal except for the length, which has
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I A r/l B2.EP B2.EP+
0.018 0.0018 0.0316 1827.05 1790.69
0.018 0.018 0.01 1783.25 1779.72
0.018 0.18 0.00316 1777.21 1776.86
0.018 1.8 1.0-10~* 1776.61 1776.57
0.018 18 3.16-107* 1776.56 1776.55
0.018 180 1.0-107° 1776.55 1776.55
Table 6.4: Euler loads for different slendernesses (simply supported beam)
I A r/l B2.EP B2.EP+
0.018 0.0018 0.0316 1843.33 1790.69
0.018 0.018 0.01 1783.04 1780.19
0.018 0.18 0.00316 1777.57 1777.22
0.018 1.8 1.0-107* 1776.97 1776.93
0.018 18 3.16-107* 1776.91 1776.91
0.018 180 1.0-107° 1776.91 1776.91

Table 6.5: Euler loads for different slendernesses (clamped beam)

been set to 2 = 200. The critical load of a clamped Euler strut is equal to the
critical load of a simply supported beam with half the length, so N, = 1776.53.
Again, the finite element model consists of 10 elements. Again the critical loads

5 2 -

Figure 6.9: A clamped Euler strut

are calculated for varying radii of gyration.

The most spectacular result of these examples is that the performances
of the Timoshenko beam are significantly better, even when the beam is less
slender. This can be explained as follows. When the beam is slender, the cross
sectional area is large compared to the moment of inertia. The corresponding
axial strain is then small compared to the curvature. When the beam is not
slender, the area is small compared to moment of inertia and the contribution
of the axial strain is large. In the simplified beam, the axial strain term in
the curvature is neglected. In case of slender beams this is no problem. When
this is not the case, the error in the second order term (the curvature) is too
large and the results are unreliable. Nevertheless, when the slenderness ratio is
smaller than 1-1073, both beams gives satisfying results.

The analysis is also done with the 3-dimensional element, but without a
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Figure 6.10: Geometry of a hinged right-angled frame

satisfying result.

6.1.5 Buckling of a Hinged Right-angle Frame under a Fixed Load

A more complicated example which combines both Euler buckling and snap-
through can be found in Simo-VuQuoc [30]. A hinged frame as drawn in figure
6.10 is subjected to a nodal force at 1/6" of the corner. The load is conserva-
tive, i.e. the direction of its work-line does not change during the deformation
process. The frame is made of isotropic material £ = 7.2 - 10 N/mm?2. The
frame is modeled using 12 B2.EP+ beam elements of equal length, 6 elements
in each leg. The displacements in the hinges are locked; the rotations are free.
The slenderness of the legs is /I = 2.0-10~2 which is near the upper boundary
which has been defined in the previous example.

The load displacement curves of the loaded point is shown in figure 6.11.
The results are equal to those found in literature.

6.2 Linear Transient Analysis

The linear part of the transient solver B2TRANS can be tested easily. Analyt-
ical solutions are available in many cases. Furthermore, the responses can be
compared to the results of the eigenvalue processor B2LIN or the explicit time
integration routine B2ETA.

6.2.1 A Flat Plate with In-plane Initial Velocities

The following example which is obtained from a memorandum by P. Volgers [33].
It considers a flat strip that vibrates in the axial direction as a consequence
of an increasing initial in-plane velocity. The dimensions and the boundary
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Figure 6.11: Horizontal and vertical displacement of hinged frame under con-
servative load
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Figure 6.12: Model description

conditions are given in figure 6.12. The strip is made of an isotropic material
with £ = 1-10* and v = 0.0. The mass-density is p = 0.01. There are no
external forces applied to the beam. The initial displacement is equal to zero,
the axial initial velocity is linearly increasing from zero at the clamped root to
Vyp at the tip.

Since this case is fully linear, the model is made of 10 Stanley shell elements
Q4.ST. Furthermore the mass is modeled using a consistent mass representation.
The response is calculated using all 4 LMS schemes that have been implemented
in the B2TRANS macro-processor. The time-step that has been used is h = 0.01 s.
The results are compared to a calculation with the explicit time integration
macro-processor B2ETA. In this analysis, the strip is modeled with 10 H8.ETA 8
node volume elements.

It can be seen that results obtained with the trapezoidal rule matches the
explicit results best. There is no numerical damping and hardly any phase shift.
Park’s LMS scheme suffers from a little amount of damping, just as Gear’s 2-
step method. Gear’s 3-step method becomes unstable after a number 50 steps.
The response is then completely wrong.

In order to test the consequences of the numerical damping of Park’s LMS
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Figure 6.13: In plane tip displacement of a flat clamped plate (B2ETA)

scheme, the same exercise is repeated for a number of different time-steps.
As can be seen in figure 6.15, the numerical damping and the p[period shift
increases with increasing time-step. This was of course expected.

6.2.2 Eigenfrequencies of a Helicopter Rotor

No matter how a structure is loaded, when it is released, it will always oscillate
in one (or more) of its eigenfrequencies. By decomposing the response of a
structure, it is possible to find these eigenfrequencies. This principle will be
used to test the reliability of the transient processor B2TRANS.

The following test-case is obtained from [24]. A scale model of a helicopter
rotor is tested in a windtunnel. In order to validate the experimental results,
the eigenfrequencies are calculated with the linear processor B2LIN. A simple
finite element model as shown in figure 6.16 is used in this analysis. The rotor
blades are 1.7 m long and made of an isotropic material. They are connected
to the shaft by a hinge. The rigid shaft is fully clamped at the free end. A
set of springs with variable stiffness is attached to the blades. By varying the
stiffness of these springs, the eigenfrequencies of the rotor can be influenced.

In this case, the blades are modeled with the new B2.NL beam elements, the
springs (which have no mass) by R2 rod elements. The blades can only move
and deform in the rotor-plane. At a certain moment the Young’s moduli of the
blades and the springs are E = 1-10'* N/mm? and E = 1-10° N/mm? respec-
tively. The first two axi-symmetric modes with the corresponding frequencies
are shown in figure 6.17.

The results obtained by the linear eigenvalue analysis are simulated by the
B2TRANS processor. The tips of all the blades are loaded by a pulsating force
in order to generate an axi-symmetric oscillation. The period that is used is
T = 0.02412 s, which corresponds to the second axi-symmetric eigenfrequency.
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Figure 6.14: In plane tip displacement of a flat clamped plate with initial
velocities.

The loading is continued for 3 periods, i.e. at ¢ = 0.07236 s the forces are
released. From this point, the blades are free to vibrate in their eigenmodes.

The lateral displacement of one of the tips as a function of time is shown
in figure 6.18. As expected, the response of the blades can be decomposed
in the 2 axi-symmetric eigenfrequencies. The large sine wave belongs to the
first mode (7" = 0.538 s), the small superposed sine wave to the second mode
(T = 0.02412 s). It may be concluded that the transient processor is working
properly and, more important, produces physical relevant results.

6.3 Nonlinear Transient Analysis

The nonlinear transient macro-processor B2TRANS is capable to perform calcula-
tions with all nonlinear structural elements available within the B2000 package.
Many of these elements, for example the C2 cable element and Rebel’s shell
elements do not have a proper description of the mass matrix. In order to
be able to use these elements, a simple mass representation for these elements
is implemented. This is done by using the description of lumped masses as
presented in section 3.6.

6.3.1 Stretched Cable Submitted to Transverse Loading

The following example is designed to test the accuracy of the nonlinear tran-
sient solver and is obtained from [8]. It consists of a cable of span L which is
stretched with an initial tension oy between 2 supports, with no sag and no
initial transverse load, figure 6.19. The dynamic loading consists of a linearly
increasing distributed transverse load with the function f(¢t) = fot. The cable
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Figure 6.15: In plane tip displacement of the plate calculated with different
initial time steps.

Figure 6.16: Model of a helicopter rotor

is considered to be fully elastic during the calculations and has a rigidity F A,
The mass per unit length is pA.

The dynamic motion is checked in the midspan node u = y(L/2). The
model is made of 20 C2 cable elements as implemented in B2000 and improved
by P. Smith. The respounse is calculated using 3 different initial time steps, i.e.
1 ms,2 ms and 4 ms respectively. Park’s three-step method is used as the LMS
scheme.

An analytical, linear solution for this problem can be deduced using the
string theory. In the first phase of the deformation (to ¢ = 0.03 s) this linear
solution describes the nonlinear response quite well. However from ¢ = 0.032 s
the linear and nonlinear solutions differ rapidly. The nonlinear solution starts
to oscillate, with a constant period.

A number of conclusions can be drawn from the response of the cable, figure
6.20. First, all calculations remain numerically stable. Even the analysis with
the time-step h = 4 ms produces converged solutions. Second, the numerical
damping as well as the phase shift is proportional to the time-step. The period
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(a) First mode, f =1.86 Hz (b) Second mode, f =41.46 Hz

Figure 6.17: Two axi-symmetric modes of a helicopter rotor

of the vibration is approximately 30 ms as can be seen in the figure. The
accuracy of the 1 ms and the 2 ms cases rather high. The damping and phase
shift of the 4 ms case is somewhat large, which is not surprising since the ratio
T'/h is smaller than 10 in this case.

6.3.2 Snap-through of a Cylindrical Shell

In order to test the feasibility of the transient solver in combination with non-
linear shell elements, the following test case is presented [14]. Figure 6.21 shows
the geometry and boundary conditions of a curved panel. In the exact center
a concentrated nodal force is applied with magnitude F'. The time history of
the load is shown in figure 6.21a. The panel is made of an isotropic mate-
rial. Young’s modulus is £ = 2 - 10" N/m?; Poisson’s ratio v = 0.25. The
mass-density is p = 10* kg/m?>.

Just a quarter of the panel is modeled in order to save on computation
costs. Symmetric boundary conditions are applied to the cutting edges. Note
that doing so, only symmetric deformation modes can be found. The nodal
force, which is applied on the crossing of the two planes of symmetry, is divided
by 4 as well. The quarter of the panel is modeled using 5 x 5 and 10 x 10
uniformly placed Q4N.REBEL shell elements. The mass is described with the
reduced lumped formulation. The response of the panel is also calculated with
the STAGS package. The 4 node 410-shell elements are used to model the panel.
In all cases an initial time-step of h = 1 ms is used. The response is calculated
up tot =0.3 s.

As can be seen from figure (6.22) the response of the structure depends on
the number of elements that has been used. In the first part of the analysis,
up to ¢ = 0.1 s the responses of all three analyses are almost identical. The
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Figure 6.19: Stretched cable submitted to a transverse loading
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Figure 6.20: Displacement of the middle node divided by the string length [




128 6. NUMERICAL EXAMPLES

L=5m
R=5bm
a = 60°
h=01m

Load Curve

100 200 t[m 5]

Figure 6.21: Panel geometry and prescribed load function

behavior in the highly nonlinear part of the analysis, 0.14 < ¢t < 0.18 depends
on the number of elements that has been used. Both 5 x5 and 10 x 10 meshes of
the STAGS analyses give the same results (only the 5 x 5 mesh is plotted here).
In B2000 the accuracy increases with increasing numbers of elements. The
response of a 20 x 20 mesh (not printed either) approaches the STAGS solutions.

In principle since both the transient solver and the mass matrices of B2000
and STAGS are identical, this difference must be denoted to the quasi-static
performances of the 2 elements. The Q4N.REBEL element is designed for thin
shell structures. The ratio ¢/R (thickness over radius of curvature) must be
small. In this case however, this ratio is equal to 0.02, which is rather high.
The performances of the element decrease at this ratio.

The reduced lumped diagonal mass matrix is working properly. In the last
part of the analysis, where the shell is oscillating around its new equilibrium,
the response is determined by the mass properties. In this part, the global
characteristics of the solutions obtained by the STAGS and the B2000 calculations
are identical.

6.4 Mode Jumping

The last series of tests discusses the calculations of mode jumps as described
in chapter 5. The presented structures are made of the 2-dimensional beam
element as well as Rebel’s shell elements Q4N .REBEL.
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Figure 6.22: Response of the panel as calculated with B2000 and STAGS

6.4.1 A Plane Frame Structure

Consider a beam structure as shown in figure 6.23. The model is made of 32
B2.EP+ beam elements of equal length. The nonlinear post-buckling behavior of
the model has been determined using the B2000 continuation package B2CONT.
Since there are two different buckling phenomena involved in this example, the
displacement in the load displacement plot is a combination of 2 displacements
(u = uy + ug), figure 6.24. It is possible to jump from the first limit point to
the second stable branch. In order to determine the damping coefficient o and
0§ as well as the initial time step h a linear dynamic eigenvalue analysis using
B2LIN. The lowest circular eigenfrequency of the system is w = 1.3434. When
a damping ratio £ = 0.2 is used, the corresponding coefficients are

S

o =tw~03 B==>~r0.15 (6.1)

As an initial time step h = 0.2 s is used.

After 8 quasi-static steps the stiffness matrix of the structure becomes sin-
gular. This means that the equilibrium is unstable. The estimate limit load
is A\ = 3.3. From this point, with the last stable solution of step 7 as ini-
tial displacement, the transient analysis is started. The corresponding constant
load-factor is Ay = 3.32. The transient processor B2TRANS is started. After ap-
proximately 150 step, at ¢ = 30 s, the kinetic energy has reached a value which
is almost 10~ % times the maximum kinetic energy, figure 6.25. At this point the
structure is at rest and the analysis can be continued using the continuation
routine. The last dynamic solution uy and the load factor Az are used as the
initial value.

After a large number of iterations, the kinetic energy was apparently still
too high, a new solution on the second, quasi-static stable path is obtained.
From this point, the analysis can be continued without any problems.
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Figure 6.23: Frame geometry and loading

6.4.2 The Verolme Panel

In this example the buckling behavior of an initially undeformed panel is con-
sidered. This particular panel was first used by Verolme [32] in his PhD. thesis.

The shells is shown in figure 6.27. It is made of 2024—T'3 aluminum with the
following material constants. Young’s modulus is £ = 70 M Pa and the Poisson
ratio is 0.272. The mass density of material is p = 2700 kg/m3. The shell is
simply supported at the edges IT and I'V (6.27a) and clamped at the other two
edges (6.27b). The panel is compressed with a prescribed end shortening at
edge I, the unit displacement is A = 2.58 mm

The FEM model is built with Rebel-type 4 node elements (Q4N.REBEL) in a
20 x 20 mesh. The mass properties of the panel are modeled with the mass ma-
trix of the 4 node Stanley element. In order to estimate the damping coefficients
« and f the fundamental eigenfrequencies are calculated. The fundamental cir-
cular frequency is w = 1469.21. The guessed values for the Rayleigh coefficients
are

a = 150 B~~6-107°

The period of this vibration is equal to 1/w = 6-107% s. As a rule of thumb the
numerical damping remains small when the time-step is 1/10" of the vibration
period. In this particular case an initial time-step h = 5- 107> s is chosen.

The pre-buckling part is calculated with the path following technique (B2CONT).
The initial load parameter A is set to 0.01. The unstable path is yet reached
at the seventh step when A = 0.3593. The last stable equilibrium was found in
step 6 at A = 0.315. The load of the bifurcation point of this shell is somewhere
between these two load factors. The jump is started from the stable equilibrium
with a constant load factor which is higher than the limit-load factor. In this
case, to speed up the analysis, a rather high load factor is chosen, Ay = 0.375.
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Figure 6.25: Kinetic energy of frame during the jump of the plane frame

During the jump a number of different patterns can be seen on the panel.
After 2.45 ms, figure 6.31b, the number of half waves in both longitudinal and
circumferential direction are rather high (4 x 5). Apparently, this equilibrium
is not stable either, so that this mode rapidly changes into a 2 x 3 half-wave
pattern 6.31c at t = 7.45 ms. It is remarkable that despite the symmetry of
the model, boundary conditions and loading, this mode is not quite symmetric.
The pattern is slightly moved in longitudinal direction. However, when the
jump is continued, this is straightened out. The 2 x 3 pattern moves towards
the center of the panel, 6.31d.

The transient analysis is continued up to ¢t = 15 ms. After inspection of the
kinetic energy during the process the decision is made whether to continue the
transient process or to restart the continuation procedure. The kinetic energy
of the transient process has already reached a minimum at t = 12.3 ms, fig. 6.30
and although it increases a little after this point, it can be concluded that the
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jump as reached a new stable path. The bode-plot 6.29 also shows that the
velocity of the node at this stage is almost equal to zero. The continuation
routine is therefore restarted from the point where the kinetic energy level is a
minimum, at £ = 12.3 ms.

Although the structure is apparently at rest, there are quite some iterations
necessary to obtain a new equilibrium on the second branch. The stiffness
matrices of the equilibrium states on this static path are positive definite. The
solution can said to be stable.
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(a) Pre-buckling path, A = 0.315 (b) Mode jump, t = 2.45 ms

(c) Mode jump, t = 7.45 ms (d) Second stable branch, A = 0.615

Figure 6.31: Deformations in z-direction of the Verolme panel during pre-
buckling and mode-jump analysis (amplification 4x)
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Conclusions and
Recommendations

The main goal of this research has been the implementation of a set of nonlinear
beam elements and a transient solution algorithm in order to be able to perform
mode-jumping simulations in B2000. Gradually, a second goal has been defined.
The beam elements and the time integration method must be developed in such
way, that they fit in the B2000 environment perfectly and that they can be
used in other fields of computational mechanics. In practice, this implies that
the beam elements must be available for other analyses (e.g. B2LIN, B2BUCK
and B2CONT), the transient processor B2TRANS must be able to handle other
elements rather than the new beam elements. Furthermore, the source code
must be written in such way that other users can immediately survey the code
and add new developments.

Theoretical formulation

Above all things, the mode-jumping problem is a post-buckling phenomenon.
The beam elements are therefore based on an engineering beam model. The
performances of this theory are claimed to be excellent in the post-buckling
regions, as opposed to traditional models like for example the Lagrange-Green
description.

In order to get insight in the development of finite elements, first a set of 2-
dimensional beams has been developed and implemented. The beams are based
on papers by Eriksson and Pacoste [5, 6]. The strain description is based on
Reissner’s theories. Two different models for the curvature are implemented. In
the most complex element a Timoshenko description is used, the other element
has got a simplified description for the curvature. Furthermore, the Bernoulli
hypothesis is applied in order to prevent shear locking.

The experiences with the 2-dimensional beam element are used in the de-
velopment of a 3-dimensional beam element. This element is based on papers
by Simo et al. [29, 30] and is also an engineering element. The curvature is
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described by the simplified expression. Apart from the addition of an out-
of-plane direction and the corresponding shear, bending and torsion modes, a
formulation for the finite 3-dimensional rotations is derived. In this case, due
to the complex formulation of this rotation tensor, the Bernoulli hypothesis is
not applied.

All three elements have got a simplified formulation for the mass, a so-called
reduced lumped mass description. The total mass of the element is divided over
its nodes; the rotational masses (inertia) are equal to zero.

The theoretical formulations are restricted in the following ways.

e The 2-dimensional beam elements are restricted in the pure bending mode.
Due to the Taylor expansion of the elastic rotation terms, accuracy is guar-
anteed for pure elastic bending where 6 < 0.3 rad ~ 17°. The estimated
error of the rotation is of the order O(63).

e The Bernoulli hypothesis is applied to the 2-dimensional beam elements.
As a result of this, the bending stiffness of these elements is somewhat
smaller. In linear static and buckling analyses, snap buckling in particular,
the result will be somewhat conservative, which is of course not a severe
problem.

e In the description of the rotations in the 3 dimensional beam, a Rodrigues
type formulation is used instead of the original rotation formulae. Un-
fortunately, this description becomes singular when the total rotation of
the beam is larger than 7 rad. Quaternions can be used to solve this
problem. However, another description for the finite rotation tensor, such
as the one used by G. Rebel in his shell elements [23] is a better option,
but slightly more complicated to implement.

The transient solver B2TRANS is based on an implicit time integration method.
In general, the best choice of an integration method depends on the charac-
teristics of the differential equation. In this case, the ODE is a stiff equation:
there is a enormous difference between the lowest (base) eigenfrequencies and
the higher frequencies. The higher frequencies are less important and need
to be filtered out. Linear multi-step methods (LMS) as proposed by Gear [7]
have the ability to ignore these higher frequencies, without loosing numerical
stability. Unfortunately, these methods suffer from numerical distortion or un-
stable bahavior. Park’s integration scheme [20, 21] is based on Gear’s methods,
but is said to be unconditionally stable in combination with small numerical
distortion.

A good alternative for the LMS methods is the trapezoidal rule. This
method produces no numerical damping at all. Unfortunately, it cannot be
used to integrate nonlinear equations. Due to the altering eigenfrequencies, it
can become unstable. Nevertheless, the method is extremely suitable for linear
equations. Park’s method is preferred when the analysis is nonlinear.

Most elements that are available does not have a description for the damp-
ing. An empirical formulation, the Rayleigh damping, is used instead. The
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damping is supposed to be a combination of the mass and the stiffness matrix.
Physically speaking, this model is not correct. However, in the simulation of
mode-jumps it is a useful alternative.

Due to a number of assumptions, there are some restrictions to the analyti-
cal derivation of the transient algorithm.

e With the construction of the history vectors h,, no attention is paid to the
fact that the displacement vector u and the auxiliary vector v contains
rotational terms. In case of large, finite rotations, these terms cannot be
added as ‘ordinary’ vector components: the rotation tensor for compound
rotations must be used instead. As a result of this, the correctness of the
method cannot be guaranteed for large rotations, 8 > 1 rad.

e The mass matrix is assumed to be linear. However, when large rotations
occurs, the inertia terms of the matrix should change. The results can
than be distorted.

Numerical Implementation

The beam elements are implemented in the B2000 package as two different
elements, B2.EP and B2.NL. The first one contains both 2-dimensional beam
elements. With an additional flag NG, the desired curvature model can be
chosen. When NG is equal to 1, the simplified curvature model is used, when
NG=2 (default) the full Timoshenko curvature is assumed. This last element is
denoted as B2.EP+. Since the element is of academic interest and not meant
for ‘commercial’ purposes, there is no attention paid to the development of a 2-
dimensional space in which the elements can be used correctly. The beam must
be used in an ordinary 3-dimensional environment instead, but can only be
situated in the zy plane. All out-of-plane displacements and rotations (z,0,,0y)
must be locked.

The 3-dimensional beam element is also implemented as a two node element
called B2.NL. The three node alternative (B3.NL) is in preparation. Unfortu-
nately, the element does not work properly in nonlinear analysis. All axial
deformations (strain and torsion) are described correctly. Furthermore, when
beam is rotated without deformation (a so-called rigid body mode) the internal
forces remain equal to 0. This implies that the description of the rotation ten-
sor is also good. The problems arise when the beam is bent. When this is the
case, the material frame, fixed to the beam and the spatial (reference) frame are
no longer identical. It might be that some variables are expressed in terms of
the wrong frame, which is fatal when the frames are no longer identical. Also,
When the beam is curved, membrane locking plays an important role. This
problem is tackled by applying the reduced integration method, but perhaps
this is not sufficient.

The transient solver B2TRANS is in its present form a fully fledged macro-
processor. It can be used in combination with the linear processor B2LIN and
the nonlinear continuation routine B2CONT. The following nonlinear elements
are tested and can be used in the processor: the C2 cable, B2.EP, B2.EP+ and
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B2.NL beam, Q4.ST and Q4N.REBEL shell elements. The performances of the
LMS schemes in combination with Jensen’s algorithm are good. The method
seems to be quite fast. Although correct benchmarks test have not been carried
out yet, it can compete with the original explicit macro processor B2ETA.

Out of the four LMS schemes that have been used (Park’s method the
trapezoidal rule and Gear’s 2 and 3 step method) the first two can be recom-
mended. The trapezoidal rule is the perfect choice in linear transient analysis,
in nonlinear cases, Park’s method is the best alternative. This scheme is almost
unconditionally stable for nonlinear calculations. When the time-step is chosen
too big, it can be difficult to obtain a converged solution. A good prediction of
the main eigenfrequency of the structure is necessary for a proper estimation of
the initial time-step. A time-step that is smaller than 0.1 times the period of
the main vibration mode is a good starting point. When the solutions diverge,
the time-step is cut.

It is possible to simulate mode-jumps by using the transient processor. All
kinds of initial values (ug, g) and load functions can be used; in this thesis the
most fundamental initial values have been considered: the initial displacement
is equal to the displacement vector of the last stable solution of the pre-buckling
path, the initial velocity is equal to 0, the external load (or prescribed displace-
ment) is constant and larger than the limit load. When a new stable solution is
reached, the simulation can be continued using the continuation routine B2CONT.
A new restart procedure has been implemented in this macro-processor by G.
Rebel.

Recommendations for Further Research

The work presented in this report is not finished yet. Due to assumptions in
the theory a number of things are capable for improvement. Furthermore, new
features can be added to beam elements and the transient processor. A list of
recommendations is given below.

e The 3-dimensional finite rotations beam element must be finished first.
When this is done, the beam B2.NL element can be developed further. The
addition of a gradient vector in order to calculate stresses in the beam,
the implementation of pre-stress, thermal effects and initial imperfections
makes the beam a fully fledged member of the element library of the finite
element package B2000.

e At the moment, material behavior of the beam element is fully elastic. A
plasticity model as well as creep model can be added in order to perform
more realistic post-buckling simulations.

e The transient solver B2TRANS can be extended in order to solve first or-
der differential equations such as heat transfer problems. This will take
just little effort, since in the Jensen equation, the mass matrix M can
be omitted without any consequences. Thermal conductivity elements
and Neumann elements are currently under development at the German
Aerospace Laboratory DLR and can be used in order to perform dynamic
thermal analyses.
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e The current formulation for the history vector allows rotations that are
moderately small. This means that when rotations are larger than 1.0 rad,
the results can become inaccurate, when the rotations are larger than
7 rad, the solution will diverge. The formulation of LMS methods can be
improved by taking the nonlinearity of large rotations into consideration.
The history vectors h must than be calculated using compound rotations.

e The mode-jumping procedure can be refined by using the bifurcation
mode in the determination of the initial displacement vector for the tran-
sient analysis. B2000 offers the possibility to calculate these modes with
the undeformed structure as a reference. This linear buckling mode anal-
ysis is implemented as the B2BUCK macroprocessor. The results are much
better when these calculations are executed using the last stable solution
of the continuation analysis as a starting point. This feature need to be
implemented in either B2BUCK or B2CONT.

e The procedures to simulate mode-jumps can be developed further in or-
der to obtain a fully reliable simulation. The influence of a number of
parameters in the process must be examined much closer. For example
the influences of the damping coefficients, initial variables and time-step.
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Users manuals

The beam elements and the transient macro-processor are implemented in the
B2000 platform. The user’s manuals for these elements and processor and the
related input decks are given in this appendix. In the near future these pages
will be added to the B2000 processors reference manual [16]. At the end of this
appendix the usage of the elements and the macroprocessor will be illustrated
by some small examples.

A.1 Nonlinear Beam Elements

The B2.EP and B2.NL nonlinear beam elements can be used for all linear and
nonlinear analyses available within the B2000 platform.

The B2.EP element is a 2-dimensional element and based on the papers by
Eriksson and Pacoste [5, 6]. The strains are based on a model proposed by
Reissner. Furthermore, the Bernoulli hypothesis is applied. As a consequence
of this, the beam cannot be deformed in a pure shear mode.

The B2.NL is a finite rotation 3-dimensional nonlinear beam element. The
exact description of the model can be found in papers by Simo et al. [29, 30].
Again, Reissner’s strain model is used. On the other hand, the Bernoulli hy-
pothesis is not applied.

Since both elements are 2 node elements its position is defined by the 2 node
points 7 and j. The B2.NL element requires an additional third node k in order
to determine the direction of the element local z axis.

Element Name
B2.EP or B2.NL. Using the NG parameter (originally meant to determine
the number of Gauss integration points) the curvature model of the B2.EP
element can be chosen. When NG is equal to 1 a simplified model is used;
when NG is equal to 2 (default), Timoshenko curvature is used.

Element Variables
The displacements u,, u, and u, and rotation r4, ry and r, at the ele-
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ment nodes ¢ and j. In case of the two dimensional element B2.EP the
displacement u, and rotations r, and r, are superfluous. In the output
these parameters will always be equal to zero.

Integration
The B2.EP element is integrated analytically, the B2.NL is integrated nu-
merically, according to a two point reduced Gauss integration. The op-
tional NG parameter is obsolete.

Required Input Processor element attributes

mid m
Specifies the element material number m.

section parameters
Specifies the section parameters with respect to the beam local axes. The
parameters for the two dimensional are specified according to

stiff area inert dummy dummy dummy dummy !
area is the beams cross section, inert the moment of inertia.

The section parameters of the 3 dimensional beam element are specified
the following way

stiff area jtors dummy dummy inertx inerty
area is the beams cross section, jtors the torsional stiffness, inertx
and inerty the moments of inertia of the beam in the element local
z and y axes.

type B2.EP or B2.NL
Specifies the current element type.

Optional Input Processor element attributes

None.

Required Input Processor material attributes

For material type ISO specify E and p.

Optional Input Processor material attributes

None.

!The stiff input card expects 6 entries. Since there are only two entries required for the 2
dimensional beam, the other 4 remain empty. By inserting a dummy value, i.e. 0.0 the input
processor will accept this input card.
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A.2 B2TRANS, The Transient Analysis Solver

B2TRANS is an independent macro-processor that performs a (non)linear dy-
namic implicit time integration analysis by calling the B2000 processors B2EP
(B2EPN), B2MP and B2AEM. The system of equation is solved using the B2000 LDL
solver b2es. The second order system of differential equations is transformed
into a first order one by using Jensen’s algorithm [13]. This first order ODE is
solved with a linear multi-step algorithm derived by Park [20, 21] (alternative
LMS schemes like the trapezoidal rule and Gear’s methods [7] are available as
well).

The macro-processor is able to operate alone, but can also be used in combi-
nation with the linear macroprocessor B2LIN or the continuation routine B2CONT
to perform mode-jump analyses. The explanation of the strategy parameters
concerning the nonlinear solution procedure can be found in the B2000 proces-
sors reference manual [16], paragraph ADIR Analysis directives

Synopsis

b2trans(parameters)

Parameters

-i ifile
Specifies the input file name (equivalent to the processor command lan-
guage command input). The default input is the terminal. If the processor
command language input file is specified by the -i parameter, the proces-
sor is automatically set to batch mode since interactive control is no more
available.

-o ofile
Specifies the output file name (equivalent to the processor command lan-
guage command output. The default output is the terminal.

-p pfile
Specifies the name of an input file to be executed at start-up. The in-
put file must contain valid processor command language commands. No
default.

-e efile
Specifies the B2000 echo file name (see Paragraph “Common Commands”.
If efile is set to NIL no echo will be produced (default).

-j jobname
Specifies a job name for job identification by the B2000 job monitor (op-
tional). No default value.

Required PCL commands

adb fname
Opens the archival data base file fname. No default value assumed.
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cdb fname
Opens the computational data base file fnrame. No default value as-
sumed.

go or run
Terminates the input sequence of the processor commands and starts
execution.

Optional PCL commands

acceleration
Calculates and saves the acceleration on the database in the dataset
ACCE.GLOB.cycle.

adir parameters end
Specifies the strategy parameters for the current run. The adir parameters
are to be found in the chapter “Input Description Language”, paragraph
“adir Analysis Directives”[16].

dyna parameters end
Specifies the time parameters for the current run as well as the starting
conditions for the transient analysis. The dyna parameters can be found
in section (A.3).

fullnewton
Use full newton procedure (instead of modified newton) to solve the non-
linear equation.

load n type to per amp

Defines the load functions. n is the loadfunction number. There are
no limitations to the number of load-functions. All load-functions are
related to the loads specified in load case 1. The forces (or prescribed
displacements) in case 2, if any, will be kept constant during the analysis.
Case numbers 3 and higher will be neglected in the analysis. type defines
the type of load function. for example sin or cos. The function sets in at
t = to, per is the function’s period (in case of repeating functions) or the
total length. The amplitude is denoted by amp. With the development a
new function is introduced the slope function, which is a linear increasing
(decreasing) function starting at ¢y with a magnitude 0.0 and ending at
t = to + per with a magnitude amp.

lutol parameter
Sets error tolerance for LU decomposition solver.

predmethod parameter
An explicit Euler prediction is used if the parameter is set to 1. If set to
0 a Newton Raphson prediction is used. Default is 0.
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A.3 Dynamic Analysis Parameters DYNA

DYNA defines the parameters which are needed for controlling the time depen-
dent dynamic analysis in B2TRANS and B2ETA as well. Most of the parameters
are required for both linear and nonlinear analysis. Whenever a parameter is
optional, a default value is defined.

Synopsis

adir
parameters
end

Required parameters

timestart wval
Starting time of iteration. wal should be equal or larger than 0.0

timeend wval
End time of iteration. val should be larger than time-start.

dt wval
Initial time step. wal should be larger than 0.0

Optional parameters

alfa wval
Rayleigh’s « damping coeflicient. Default value: 0.0

beta wval
Rayleigh’s 8 damping coefficient. Default value: 0.0

initdisp
Use displacements in the database (calculated by B2LIN or B2CONT) as
initial displacements uy.

initvelo
Use velocities as defined in the inputfile as initial velocities 1.

load n type to per amp

Defines the load functions. n is the loadfunction number. There are no
limitations to the number of load-functions as long as they are inserted
consecutive. type defines the type of load function. for example sin,cos.
to is the time when the function sets in, per the function’s period (in
case of repeating functions) or the total length. amp is the amplitude
of the function. For more information see the B2000 Processors reference
manual [16],

method name
Defines the linear multi-step method used to solve the dynamic equation.
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Up till now, 4 methods are available, i.e. Parks, Gear 2 step, Gear 3 step
and the trapezoidal method, park, gear2, gear3, trapezoidal respec-
tively. Default value: park.

noload
Ignore load functions as defined previously.

A.4 Known Bugs

Despite all the hard work, some bugs are left in the code. Since they are all
part of the user interface, they do not affect the results. In other words, so far,
they are just annoying.

Initial velocities:
It is possible to assign arbitrary velocities (or spins) to specific nodes in
the input processor. Most likely, this should be done in the input file
using the data set called VELO. Right now, this data set cannot be used.
The velocities can be assigned by using a force data set and calling it
case 999. For instance, when node 4 must move with a speed of 3 in the
z-direction, the input file must contain the following lines

FORCE
CASE 999 DOF 1
F=3.0 4

END

Load history function:
Due to an error, in the dyna data deck in the input file, all input after a
load history function will be neglect. So, be sure that the dyna deck is
always closed with the set of load history functions, if any.

DYNA DYNA
TIME_S 0.0 TIME_S 0.0
TIME_E 1.0 TIME_E 1.0
DT 0.01 LOAD 1 SIN 0. 1. 0.3
ALFA 0.04 DT 0.01
LOAD 1 SIN 0. 1. 0.3 ALFA 0.04
END END

The left hand side example is correct. In the other one the data assigned
to DT and ALFA will be neglected.

A.5 Examples

To illustrate the usage of the beam elements the complete input file of the
example as presented in section 6.1.2 is given. The mode-jumping simulation
is illustrated with the input-file and PCL commands of the Verolme test case,
section 6.4.2.
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A.5.1 Large Deflection of a Cantilever Beam

Th

e archival database largedefl.adb of this test case is made with the input

processor B2IP. The ascii text input file is presented below.

Tit

H H H H HE H H HE R B HEHE R HHEHEHEHHE R AR

#
ADI

END

#

BRA

#

#

#

NOD.
1

a s W N

9
END
#

#

#

ELE
i

le "Large Deflection Analysis of a Cantilever Beam"
Obtained from

Author : C. Pacoste, A. Eriksson

Title : Element behavior in post-critical
plane frame analysis

Journal : Comp. Meth. Appl. Mech. Engrg

Vol. 1256
Year ;1995
Pages : 319-343

Declaration of optioms

eltype : 1 Eriksson Pacoste type (88)
Simplified bending
2 Eriksson Pacoste type (88)
Timoshenko bending
3 Simo-VuQuoc type (89)

lotype : 1 Tip force
2 Tip moment

(eltype=2)

(lotype=2)

R

ANALYSIS NONLINEAR

LCA 1 PAS 0.0 DPAS 0.001 PAMAX 3.5 Loadcase A

LCB 0 Loadcase B

NCUT 15 NFACT 80 NSTRAT O MAXIT 15 MAXSTEP 100 Strategy parameters

EPSDIS 0.001 error tolerance incr. displacement
EPSR  0.001 error tolerance residual force
NCH 1

NODE DESCRIPTION

ES
0.0 0.0 0.0
25. 0.0 0.0
50. 0.0 0.0
75. 0.0 0.0
100. 0.0 0.0
99 0.0 1.0 0.0
ELEMENTS
M

f (eltype=1) (
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TYPE B2.EP NG 1
)

if (eltype=2) (
TYPE B2.EP NG 2
)

if (eltype=3) (
TYPE B2.NL NG 2
)

STIFF 0.6 0.0 0.0 0.0 0.0 0.018 0.018

MID 1
101 1 2 999
102 2 3 999
103 3 4 999
104 4 5 999
END
#

# BOUNDARY CONDITIONS
#
BOUND
LOCK LLLLLL 1
ALLLOCK FFLLLF
END
#
# FORCES
#
FORCE
if (lotype=1) (
CASE 1 DOF 2
P=1000. 5
)
if (lotype=2) (
CASE 1 DOF 6
P=10000. 5
)
END
#
# MATERIAL CONDITIONS
#
EMAT
MID 1
TYPE BEAM E 1.E8 P 0.3
ENDMID
END
#
ENDBRANCH
#
RUN

1: simplified 2 dimensional

2: Timoshenko 2 dimensional

3: 3 dimensional

Material id. 1

Stiffness parameters, resp.

Area, Torsional stiffness

Shear stiffness in x and y direction
Moment of inertia in x and y direction

Node 1 fully locked
All out-of-plane deformations locked

Nodal displcement in y direction
Unit load, load applied at tip

External moment around z axis
Unit moment, moment applied at tip

Material id. 1
Beam type material
Young’s modulus, Poisson’s ratio

When the archival database is copied to obtain a computational database
largedefl.cdb the continuation procedure can be started. After typing

[001]dutlccl % b2cont

the following PCL commands must be given.

Continuation procedure Macro Processor (b2cont), Version 1.9
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B2CONT -> adb largedefl.adb
B2CONT -> cdb largedefl.cdb
B2CONT -> fullnewton

B2CONT -> go

A.5.2 The Verolme Panel

Archival database
Computational database
Full Newton method used
Start analysis

The archival database verolme.adb is constructed in an ordinary way using
the B2IP input processor. The input file with the specific strategy parameters

is shown below.

TITLE=’Modejumping analysis of the Verolme Panel’

#
# NONLINEAR ANALYSIS STRATEGY PARAMETERS
#
ADIR
ANALYSIS NONLINEAR
LCA 1 PAS 0.0 DPAS 0.01 PAMAX 100.0
LCB 0O
NCUT 10 NFACT 10 NSTRAT O MAXIT 15 MAXSTEP 300
EPSDIS 0.0001

EPSR  0.0001
END
#
# DYNAMIC ANALYSIS
#
DYNA

TIMESTART 0.0
TIMEEND 0.3
DT 0.0001

END

#

# BRANCH DIRECTIVES

#

BRANCH=1

#

BDIR
MATERIAL=ELASTIC
DEFORM=NONLINEAR

END
#
# NODES
#
NODES
1 -2.50000E+02 -1.71570E+02  4.09371E+01
2 -2.25000E+02 -1.71570E+02  4.09371E+01
3 -2.00000E+02 -1.71570E+02  4.09371E+01
4 -1.75000E+02 -1.71570E+02  4.09371E+01
438 1.75000E+02 1.71570E+02  4.09371E+01
439  2.00000E+02 1.71570E+02  4.09371E+01
440  2.25000E+02 1.71570E+02  4.09371E+01
441 2.50000E+02 1.71570E+02  4.09371E+01
END

Nonlinear analysis

Loadcase A

Loadcase B

Strategy parameters

Error tolerance incr. displacement
Error tolerance residual force

Starting time
Ending time
Initial timestep

Node generation
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# ELEMENTS
#
ELEM
TYPE Q4N.REBEL MID 1 THICK 1.0 NGAUSS 4 NIM 2
1 1 2 23 22
22 22 23 44 43
43 43 44 65 64
64 64 65 86 85

356 356 357 378 377
377 377 378 399 398
398 398 399 420 419
419 419 420 441 440

END

#

# BOUNDARY CONDITIONS

#

BOUND
LOCK FLLLLL 21/441/21
LOCK LLLLLL 1/421/21
LOCK FFLFLL 1/21 421/441

END

#

# MASS MATRIX

#

MASS
TYPE CO
ELEM 1/419

END

#

# PRESCRIBED DISPLACEMENT VECTOR

#

FORCE
CASE=1
TYPE=D DOF=1
P=-0.2

END

#

ENDBRANCH

#

# MATERIAL PROPERTIES

#

EMAT
MID 1

TYPE ISO E 7.0E6 P 0.272
DENS 2.7E-6
ENDMID

END

#

RUN

21/441/21

Element definition

Rebel 4 node shell element
material id. 1

thickness

4 points Gauss interpolation

Edge I
Edge III
Edge I and IV

Constistent mass matrix
All elements

Loadcase 1
Prescribed displacement
Unit displacement on edge 1

Material id. 1

Isotropic material, Young’s
modulus, Poisson’s ratio
Density.

The computational database verolme.cdb can be created by copying the
contents of the archival database to the computational database. The continu-
ation processor can now be started. In order to obtain accurate results, a full

Newton iteration procedure has been used.
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After typing
[002]dutlccl % b2cont

the following PCL commands must be given.

Continuation procedure Macro Processor (b2cont), Version 1.9

B2CONT -> adb verolme.adb Archival database
B2CONT -> cdb verolme.cdb Computational database
B2CONT -> fullnewton Full Newton method used
B2CONT -> go Start analysis

The path becomes unstable first at step number 7. The last stable result, step
6, will be used to initiate the transient analysis. The corresponding load-factor
at step 7is A = 0.316. To give the structure a large enough ‘boost’ the constant
load-factor during the jump is set to A = 0.375. De transient processor is started

by typing

[003]dutlccl % b2trans

The corresponding PCL commands are:

Transient Analysis Macro Processor (b2trans), Version 1.9

B2TRANS -> adb verolme.adb Archival database

B2TRANS -> cdb verolme.cdb Computational database
B2TRANS -> fullnewton Full Newton method used
B2TRANS -> predmethod 1 Explicit euler prediction used
B2TRANS -> adir Change ADIR directives
B2TRANS -> step 6 Start at step 6

B2TRANS -> end
B2TRANS -> dyna

B2TRANS ->  timestart 0.0 Start time

B2TRANS -> timeend 0.3 End time

B2TRANS -> dt 5.0e-5 Initial timestep

B2TRANS -> alfa 150.0 Rayleigh’s damping coefficients
B2TRANS ->  Dbeta 6.0e-5

B2TRANS -> end

B2TRANS -> load 1 step 0. 0.3 3.32 Load function

B2TRANS -> go Start analysis
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Numerical Implementation

The implementation of the beam elements and the transient processor has re-
sulted in a large amount of new source code. There is no need to print this
code here, since it can always be looked up in the B2000 master version. Just a
global outline is given in this appendix. For more information about the code,
one can refer to the list of all created and modified subroutines which is given
in appendix C.

B.1 Beam Elements

As said before, the B2000 platform is designed to be used in a research environ-
ment. This means that new developments in FEM analysis can be implemented
in the code very easily, using standard formats. In principle, the implementa-
tion of a new element, whether it is a structural, a viscous or a heat transfer
element, can be done by creating a single source file. In this file, the construc-
tion of the element local property matrices (e.g. stiffness or heat conductivity
matrices) of a single element are calculated. All standard operations, such as
the construction of the total global matrices of the model and the sky-lining of
these matrices are performed by other routines.

Each element in the B2000 package has its own id number. The 2-dimension-
al beam element that has been developed in this thesis has got number 88,
the two node, 3-dimensional beam has got number 89. Element number 90
is reserved for the three node 3-dimensional beam element. The mechanical
properties are given by the internal forces vector and the stiffness matrix, the
dynamic properties are given by the element mass matrix. For historical rea-
sons, the creation of the mass matrix is done by an external source file. The
total number of new source files is therefore equal to 2 files per element, one for
the mechanical properties (internal forces vector and the stiffness matrix) and
one for the dynamic properties (mass matrix).
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B.1.1 Internal Forces and Stiffness Matrix

The assemblage of the element mechanical properties is done by the subrou-
tine b2epn.F, where n is the element id number, in this case b2ep88.F and
b2ep89.F. Both files have a standard argument list in which the input as well
as the output parameters (first- and second variation matrices) are included.
The most important (and in this case relevant) input variables are the nodal
displacements and rotations of the element (stored in the array disp(*)) and
the incremental displacements and rotations ddis(*). Material data, the el-
ement prevariational package elprev(*) and the element updated reference
frame elurf (%) are also important input variables. The displacement arrays
are expressed in terms of the branch global coordinate system. Since the element
properties are calculated in the element local coordinate system, the displace-
ments must be transformed into this coordinate system first. The transforma-
tion matrix which is used for this operation can be obtained from the element
prevariational package.

The output of this routine, i.e. the element first variation vector elfvar (*)
and the element stiffness matrix elsvar(*), must be transformed the other
way around. These quantities are calculated in the element local frame and
must be transformed to the branch global system. Since the stiffness matrix is
always symmetrical, just the upper triangle is stored in the array elsvar (*).
When the stiffness matrix is not symmetrical, which is the case with the 3-
dimensional beam element B2.NL, the matrix must be split into a symmetric
and a skew-symmetric part first. The symmetrical part is then copied to the
elsvar(*) array.

All the element first and second variation matrices (in branch-global for-
mat) are collected by the element kernel interface module b2ep0. The macro-
processor B2EPN places all element matrices in the right position and creates the
global first- and second variation vector. The second variation vector (which
is still the upper triangle of the stiffness matrix) is sky-lined by an external
processor B2AEM. The results of this operation, the band of the matrix and its
address vector are stored on the database as the datasets SVAR.GLOB (band)
and SVAR.ADR (address vector).

B.1.2 Mass Matrix

The assemblage of the global mass matrix is done in the same way by the
processor B2MP. The element mass matrices are constructed in the subroutines
b2ep88.F and b2ep89.F respectively. The description of the mass is linear,
which means that it is independent of the displacements and rotations. This
implies that there are less input variables. Just general data, such as material
density parameters and element dimensions (via the elprev(*) array) is input.
The element mass matrix, in branch-global coordinate system, sme (*) is the
only output.

The element mass matrix can be stored in two forms. When a consistent
mass description is used, the mass matrix is symmetric and fully filled. The
output matrix sme (*) is then the upper triangle of this matrix. When a lumped
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elprev(l) | empty elprev(8) | moment of inertia Iy
elprev(2) | empty elprev(9) | empty

elprev(3) | empty elprev(10) | empty

elprev(4) | beam length L elprev(11)| Young’s modulus F
elprev(b) | cross section A elprev(12) | Poisson’s ratio
elprev(6) | moment of inertia I elprev(13) | mass density p
elprev(7) | cross section A elprev(14) | empty

Table B.1: Element prevariational data package of 2 dimensional beam

diagonal description is used, the mass matrix is just a diagonal matrix and in
order to safe expensive memory space, sme (*) is smaller and just contains these
diagonal terms.

In the transient processor, the global stiffness and the mass matrices are
added with the dynamic stiffness matriz as a result. It need no discussion
that this can only be done when both matrices are of the same size, i.e. when
a consistent mass matrix is used. In the derivation of mass matrices for the
nonlinear beam elements, a reduced lumped diagonal mass matrix has been
proposed. These matrices have been implemented within B2000 as consistent
mass matrices, with just zeros in the off-diagonal terms. A pleasant property
of diagonal matrices is that they are invariant of the coordinate system. This
means that the expression for such matrices in an element-local system is equal
to the expression in a branch-global system, which implies that there is no
transformation needed.

B.1.3 Element Prevariational Data Packages

The previously mentioned elprev(*) array contains a number of constants,
which describe the initial state of an element. This data does not change and
is available throughout the analysis. All data in the array is stored in a dou-
ble precision format. The length of the array is defined in the include file
b2ipepar.inc. The elprev(*) arrays of all elements in the model are stored
in one single database, called ELPREV.

In this case, the beam dimensions, its original position vectors (which are
used to build the transformation matrix) and stiffness parameters are stored
in this array. The exact location of the variables within the array of both the
2-dimensional beam element as well as the 3-dimensional beam element can be
found in the tables B.1 and B.2.

B.1.4 Element Updated Reference Frame

The description of the rotation tensor of the 3-dimensional element is based
on a nonlinear formulation. A new rotation tensor is calculated by updating
the old one, using incremental rotations. This implies that at every step, the
rotation tensor (or the so-called reference frame) must be saved on the database.
It can be read at the next step and used to calculate the new rotation tensor.
This data is stored in the elurf () array. This array is constantly updated (as
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elprev(l) | length in z-dir. elprev(11)| Young’s modulus £
elprev(2) | length in y-dir. elprev(12) | Poisson’s ratio p
elprev(3) | length in z-dir. elprev(13) | shear modulus G
elprev(4) | beam length L elprev(14) | n, direction vector
elprev(b) | strain stiffness £ A elprev(15)

elprev(6) | torsional stiffness G.J elprev(16)

elprev(7) | shear stiffness GA, elprev(17)

elprev(8) | shear stiffness G A, elprev(18)

elprev(9) | bending stiffness EI, elprev(19)

elprev(10) | bending stiffness E1, elprev(20)

Table B.2: Element prevariational data package of 3 dimensional beam

opposed to the elprev(*) array which is kept constant). It can contain any
information of the type double precision real. The length of this array is also
defined in the b2ipepar.inc include file. The contents the elurf () array is
listed in table B.3.

B.2 B2TRANS macro-processors

As opposed to the rather straightforward implementation of new elements, the
development of a completely new macro-processor requires are more fundamen-
tal approach. There is no specific format in which the macro-processor must
be written. As a result of this, many decisions regarding the internal structure
of the processor are left to the programmer.

Although the B2TRANS macro-processor is based on the implicit time inte-
gration processor B2IDTI by K. Yildirim [34], it has been rewritten completely
for a number of reasons. First of all Yildirim’s version was not stand alone. It
used the B2LIN macro-processor as a front end. The stiffness and mass matrices
were calculated by this macro-processor. The B2IDTI program ounly performed
the actual time integration procedure. Strictly speaking, it was therefore not
a macro-processor, since it could not be used as an independent processor.
Second, there was no interface with the input processor B2IP. All analysis pa-
rameters must be given by PCL commands. Finally, little attention was paid
to the internal structure of the program. For example, there was no unique use
of static of dynamic allocated variables.

When rebuilding the program, two macro-processors have been used as an
example. The first one is B2ETA. This macro-processor performs the same ana-
lysis as B2TRANS, namely a time integration analysis. When they are considered
as black boxes, they must be identical. For this reason and in order to maintain
the unity throughout the B2000 package, the user interface for B2TRANS is copied
from B2ETA.

The internal structure of the source code and the data storage is copied from
macro-processor B2CONT. The path-following technique which is implemented in
this processor has many resemblances to the implicit transient analysis. Both
methods calculate the response of a structure step wise, using an iterative so-
lution procedure. Also the way the data is stored on the database is copied
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Integration

Point £=—-0.577 &€ =0.577 ¢£€=0.0
elurf(1) Init. flag

elurf(2) A171 elurf(20) Al,l elurf(38) Al,l
elurf(3) Aoy elurf(21) Aoy elurf(39) Aoy
elurf(4) A371 elurf(22) A3,1 elurf(40) A3,1
elurf(5) Ao elurf(23) Ao elurf(41) Ao
etc etc. etc

elurf(11) | wy elurf(29) | w1 elurf(47) | w1
elurf(12) Wy elurf(30) wo elurf(48) wo
elurf(13) | ws elurf(31) | ws elurf(49) | ws
elurf(14) " elurf(32) " elurf(50) "
elurf(15) VY2 elurf(33) V2 elurf(51) V2
elurf(16) V3 elurf(34) V3 elurf(52) V3
elurf(17) K1 elurf(35) K1 elurf(53) K1
elurf(18) Ko elurf(36) Ko elurf(54) Ko
elurf(19) K3 elurf(37) K3 elurf(55) K3

Table B.3: Element updated reference frame data package of the 3-dimensional
beam element

from this macro-processor, which benefits the interaction between B2TRANS and
B2CONT. This is important regarding the most important goal for the new tran-
sient processor: the calculation of mode-jumping phenomena.

The various aspects of the macro-processor B2TRANS are regarded in this
section. This will be done in a chronological fashion, from the initialization of
the program to the final output. In figure B.1 a flow chart is presented which
can be used as a guide through the program.

B.2.1 Initialization

In the main file, b2trans.F all I/O is initialized. The archival and the computa-
tional databases are opened and the log file, in which the analysis is evaluated,
is created. The initialization of the integration process is done in the command
module of the processor. In this file, called b2transcm.F, all necessary data is
read from the archival data base. Furthermore, the mass and stiffness matrices
are constructed.

Strategy Parameters

The initialization of the analysis also includes the reading of all strategy pa-
rameters. The strategy parameters can be divided into two classes. The first
class contains data dealing with the time integration process. This information
is stored on the archival database in the dataset DYNA. The contents of this
dataset is given in table B.4. The second class contains the nonlinear analysis
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Name Description Type ) Default
ALFA Rayleigh’s constant « E 0.0
BETA Rayleigh’s constant (3 E 0.0
INITDISP Initial displacement flag I 0 (off)
INITVELO Initial velocity flag I 0 (off)
METHOD LMS method C PARK
STARTTIME starting time E -
ENDTIME end time E -
DELTAT initial time step E -
LOADFUNC Number of history functions I 0

1) I=integer, E=single precision real, C=character

Table B.4: Data entries in the DYNA dataset used by B2TRANS

Name Description Type ) Default
ANALYSIS Linear or nonlinear analysis C LINEAR
FULLNEW Full or modified newton i 1

ICY Starting cycle i 0
MAXIT Maximum number of iterations i 5
EPSDIS error tolerance incr. displacement e 0.001
EPSEQ error tolerance res. force e 0.001
MAXSTP maximum number of steps i 9999

1) I=integer, E=single precision real, C=character

Table B.5: Data entries in the ADIR dataset used by B2TRANS

strategy parameters, which control the iteration process. They can be found in
the dataset ADIR, table B.5.

Both the dynamic and the nonlinear analysis parameters are immediately
stored in common blocks, which are defined in the include file b2trans.inc.
Doing so, the strategy parameters are available in all parts of the program.

Initial Conditions and Unit Force

When the strategy parameters are read and stored in the common blocks, the
initial conditions are obtained. The initial displacement ug, initial velocity
up and the unit force function f§* must be read from the database. When
the initial displacement is the result of a quasi-static analysis (B2CONT) it is
written in the dataset DISP.GLOB. . .n, where n is the cycle number. When
the initial displacement is obtained from a linear static analysis , it is stored
in the data set DISP.GLOB.1. Initial velocities can always be found in the
dataset VELO.GLOB. . .n, the unit load vector in FORC.GLOB. 1. It is also possible
to deform the structure using prescribed displacements. The unit prescribed
displacement vector is stored in the dataset GDC.GLOB. . .1, its address vector
in GDCW.GLOB.
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Construction of the matrices

The construction of the mass and stiffness matrix as well as the internal force
vector is already explained in the sections B.1.1 and B.1.2, which is an inter-
pretation from the element point of view. In this section the construction of
the matrices will be considered from the transient solver point of view.

The mass matrix is constructed using the B2000 processor B2MP. This pro-
cessor constructs the complete branch-global mass matrix of each branch of the
model. The output is written in a vector called EMSS.br, where br denotes the
branch number. The total mass matrix is constructed out of the branch related
mass vectors using the processor B2AEM. The resulting matrix is stored in two
data sets EMSS.GLOB and EMSS. ADR. The actual sky-lined band of the matrix is
stored in the first dataset. The addresses, which mark the position of the band
are stored in the second one. Since the mass matrix is linear and independent
in the time domain, this procedure only has to be done once.

The stiffness matrix can be either nonlinear or linear. The nonlinear stiffness
matrix is assembled using the processor B2EPN, following the same procedure
as when assembling the mass matrix. First the stiffness matrix is calculated
per branch. The results are stored in the data sets ELSV.br.n, where n denotes
the cycle number. The matrix assembler creates a global stiffness matrix for
the complete structure. The band is stored in the data set SVAR.GLOB.n, the
addresses in SVAR.ADR.n. The consistent mass and the stiffness matrices are
sky-lined using the same procedure. As a result of this, both address datasets
EMSS.GLOB and SVAR.GLOB are identical. One of them can be deleted imme-
diately. The internal forces vector is calculated also calculated by the B2EPN
processor. The result is stored in the dataset FVAR.GLOB.n. When a linear
element description is used, the stiffness matrix is calculated by B2EP.

B.2.2 Time Integration Process

When the initial conditions, the internal forces vector and the mass and stiffness
matrices are known, the actual time integration process can be prepared. This
is done in a new subroutine, called b2trlms.F.

History Vectors

First the auxiliary vector v and the history vectors h}; and hy are calculated.
The auxiliary vector is composed out of the internal forces vector and the cur-
rent load. This is done using MEMCOM commands. The big advantage of this
method is that the data need not to be read by the program. The manipu-
lations are carried out in the database itself, which saves a lot of I/O time.
The auxiliary vector is stored in the dataset V.PREV.1. The history vectors are
calculated following the same procedure. They are stored in the datasets UHIS
and VHIS.
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Load Factor

The load-factor A(t) for the current time-step ¢, is also calculated in this sub-
routine. The load-factor is the sum of a maximum of 20 load-functions. The
value of these load-functions is determined by the subroutine b2mapch.F. This
routine returns the function value which corresponds to ther current time ¢,.
The function values of all load-functions are summed with the total load-factor
A(tn) as a result.

Dynamic Stiffness and Force Vector

Out of the history vectors, the load-factor and the mass- and stiffness matrices,
the complete Jensen equation can be formed. This is done in two different
ways. In the linear case, the dynamic stiffness matrix E is formed and stored
in the dataset EVAR.GLOB. The dynamic force vector g and the forces due to
the prescribed displacement gP are also determined and stored in the datasets
RHS and FRHS respectively. These calculations are performed in the subroutine
b2trlin.F. In the nonlinear case the Jacobian H,, the residual vector r and
the prescribed force vector gP are calculated in the subroutine b2trnonl.F and
stored in the datasets HVAR.GLOB.n, RHS and FRHS.

B.2.3 Solution Techniques

When the various parts of the Jensen equation are calculated and stored on
the dataset, the equations can be solved for u, using the equation solver b2es,
which solves the general linear (or linearized) equation Ax = b for the unknown
x. The matrix A is first decomposed. The result is used to solve the equation
using a LDL technique. When the matrix is already decomposed, the first step
can be skipped. In this section the solution technique for both the linear and
the nonlinear equation are regarded.

Linear Equation

The solution of the linear equation is rather straightforward. The dynamic
stiffness matrix E is constant for all time-steps. As a result of this it must
only be decomposed once. The factorized matrix can be used throughout the
calculations, for every time step. The right hand side vector g — gP contains
also the internal forces due to the prescribed displacement. These prescribed
displacements are still part of the system of equations Eu, = g — gP which
is therefore undetermined: the number of equations is larger than the number
of unknowns. This problem is also tackled by the b2es processor. Instead
of reducing the number of equations to the number of unknowns, which is a
rather time- and memory consuming operation, penalty values are used. First
the solver checks which rows and columns of the dynamic stiffness matrix belong
to the described degrees of freedom. The values of these positions are replaced
by an infinite large number, say 1-10° times the highest value in the original
matrix. The corresponding terms in the right-hand-side vector are replace by
0. As a result of this, the prescribed d.o.f. in the displacement vector u will
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become zero (or almost zero). Later these values are replaced by the original
prescribed values.

Nonlinear Equation

The solution procedure for the nonlinear equation is equal to the described
above, but with some exceptions. In this case the solution must be found
iteratively and the matrix of the equation H is not constant for all time steps.
The solution can be found using a full- or a modified Newton iteration method.
The only significant difference between these two methods is that for the first
method the Jacobian H must be calculated and decomposed at every iteration
step. When using the modified Newton procedure the Jacobian is constant
for all iteration steps. It just needs to be calculated and decomposed at the
beginning of the iteration process. The solution of this equation, Au must be
added to the previous solution u¥. The rotational d.o.f. in this incremental
displacement vector are added according to the theorem as described in section
4.6.3. This is done in a general subroutine b2cirot.F, previously used in the
continuation routine.

After every iteration step the convergence is checked by evaluation the to-
tal length of the residual force vector, ||r|| and the length of the incremental
displacement ||Au||. When both values are approaching 0, the solution is con-
verging. When the values are smaller than a certain value, section 4.6.4, the
solution u,, is accurate enough and can be saved on the database as the dis-
placement of this step, DISP.GLOB.n. When the solution does not converge
within a maximum number of iterations, the iteration procedure is aborted.
The time step h is cut and the iterations start from the beginning with the
previous solution u,_; as a starting point. This implies that the complete pro-
cedure must be repeated, starting with the assemblage of the history vectors
h} and hy. When the maximum number of time step cuts is exceeded the
complete analysis is aborted.

B.2.4 Additional Calculations

When a converged solution u, is found, some additional calculations must be
done. These calculations are the same for both the linear and the nonlinear
equation and are therefor executed in the central part of the LMS module,
b2trlms.F. The data is stored on the database and the calculations are prepared
for the next step.

Velocity, Acceleration and Energy

The velocity of the current time-step 1 is calculated using the converged solution
and the history vector h)}. The result is stored in the dataset VELO.GLOB.n.
The acceleration will be calculated on request, using the current velocity and an
additional history vector! h,"{. The result is stored in ACCE.GLOB.n. Finally,the

Lthis history vector is not relevant for the Jensen procedure, but can be determined at the
same time as the other two history vectors.
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kinetic and strain energy are also calculated and saved in the description table
of the dataset DISP.GLOB.n.

Removing Temporary Datasets

Due to the complicated solution method, a large amount of datasets is created.
Most of them are as large as the total number of degrees of freedom, such
as the displacement and internal forces datasets. The datasets which contain
a sky-lined matrix, such as the mass, the stiffness and the dynamic stiffness
matrix (and the Jacobian) are extremely large. In a nonlinear analysis two
of these datasets are created at every step, i.e. the stiffness matrix K and
the Jacobian H. In principle, they are not needed in the future and can be
deleted after each step. In the older versions of MEMCOM, a dataset could not be
removed completely. Just the label was deleted. The size of the database did
not change. In newer version of MEMCOM the database can be reassembled (the
empty datasets are removed) using the defrag command.

B.3 Datasets

Since all numerical operations are executed in the database, every variable in
the Jensen algorithm has its corresponding dataset entry. Apart from a number
of temporary datasets, named A, B, C and D the most important ones are listed
in the table below.

Dataset name  Symbol  Description

ACCE.GLOB.n u, acceleration at step n

DDIS.GLOB Au incremental displacement

DISP.GLOB.n  u, displacement at step n

EMSS.ADR address vector of mass matrix
EMSS.GLOB.O M band of the mass matrix

EVAR.ADR address vector of dynamic stiffness matrix
EVAR.GLOB.n E band of dynamic stiffness matrix

FINT Ku internal forces vector (linear)
FORC.GLOB..1 f§** Unit force vector, £*(¢) = A(¢)£5

FRHS g? prescribed dynamic force vector

FVAR.GLOB.n  f™ first variation vector at step n
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GDC.GLDB u) unit prescribed displacement vector

GDCW.GLOB prescribed displacement address vector

HVAR.ADR.n address vector of Jacobian at step n

HVAR.GLOB.n H, band of Jacobian at step n

RHS g right hand side of linear equation (dyn. force)
r residue vector

SVAR.ADR.n address vector of siffness matrix

SVAR.GLOB.n K, band of the stiffness matrix

UHIS h} History vector of displacement u

VELO.GLOB.n 1, Velocity vector

VHIS hY History vector of auxiliary vector v at step n

VHIS.PREV hY | History vector of auxiliary vector v at stepn—1
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B2TRANS

This flow chart of the B2TRANS macropro-
cessor contains all important actions. In
order to save space, additional computa-
tion, such as the algorithm which updates
the rotational increments or the routines
to solve the (linearized) system of equa-
tions are not included.

Figure B.1: B2TRANS flow chart
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Source Code

The source code of the B2000 platform is available for every user. It is therefor
important to keep up a good description of every piece of the syntaxis of the
program. In principle, this is done in two ways. The most important is the
B2000 Programmers handbook in which the syntaxis of every subroutine is
explained with all input flags. Secondly the code is described in the source
code itself by using comment statements. This last method is not very official
and it is the respounsibility of the programmer to maintain the comment-lines
in his source code.

All new pieces of source code that have been written during this research
are reported in this paper. A short overview of their functionality is given as
well. Although the finite element method B2000 is claimed to be fully modular,
some new implementations also required changes in existing parts of the source
code. In order to prevent miscommunications, all changes to these source files
are reported in this chapter.

C.1 2 dimensional beam element, B2.EP

The 2 dimensional, nonlinear beam element B2.EP could be implemented in
B2000 very easily. This straightforward element did not require any additional
changes in existing source code: it could be inserted as a standard element.
The element has got number 88. All source files that are related to this element
start with the code b2ep88.

Filename Description
b2ipepar.inc The new and sizes of the elements are defined in this
include file.
enum=88 element number
enam=’"B2.EP’ element name

nnel=2 number of nodes



174

C. SOURCE CODE

b2ep88.F

b2epv88.F

b2ep88elbg.F

b2ep88fvar.F

b2ep88svar.F

b2ep88trans.F

nncl=3 number of reference nodes
lefo=12 number of d.o.f.’s
ndfn=20 length of elprev array
flgn=1 nonlinear element flag

Main element file. In this routine all the the other
routines are invoked. Furthermore, the transformation
from Antman’s parameters to nodal displacements, as
well as the transformation from the element local to the
branch global coordinate system is executed here.

In this file, the prevariational data is calculated and
stored in the elprev(x*) array. The structure of this
array can be found in table B.1

The transformation matrix for the coordinate system
transformation is created in this routine. The z and y
coordinates of both nodes are used to do so. The actual
transformations are done in the main file.

In this file the first variation vector (for both the Tim-
oshenko and the simplified beam) in terms of Antman’s
coefficients are calculated.

The second variation matrices for both beams in terms
of Antman’s coefficients are calculated in this routine.

In this routine the matrices for the transformation of
the first and second variation to nodal displacements
and rotations are calculated.

C.2 3 dimensional beam element, B2.NL

The implementation of the 3 dimensional nonlinear element has been done using
the same procedures as described above. Again the parameters of the element
are set in the b2ipepar.inc file. The 2 node 3 dimensional element has got
number 89. Number 90 is reserved for the 3 node nonlinear beam element,
which is due to be implemented in the near feature.

Filename

Description

b2ipepar.inc

The new and sizes of the elements are defined in this
include file.

enum=89 element number

enam=’B2.NL’ element name
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nnel=2 number of nodes
nncl=3 number of reference nodes
lefo=12 number of d.o.f.’s
ndfn=6
lepr=20 length of elprev array
leuf=55 length of elurf array
flgn=1 nonlinear element flag
b2ep0.F The element routines are invoked in this kernel routine.

There are 4 additional arguments (among which the in-
cremental displacement ddis(*) added the list for the
b2ep89.F element. The syntaxis as used by G.Rebel for
the implementation of his finite rotation shell elements
is used.

1089 call b2ep89(coor, disp, etrans,

* eprop, epropall, elaminates,
* elprev, elurf, elfvar, elsvar, elstab,
* eltfor, ellfor, plasold, plasnew,

c-JR
* ddis, d, delfvar, delsvar,

c-JR
* work, irad, istat)

b2ep89.F Main file for the 3 dimensional beam element. In this

file the numerical integration as well as the complete
construction of the first and second variation matrices
are tackled. Also the transformation from element local
to branch global and vice versa.

b2epv89.F The prevariational package of the element is created in
this routine. The contents of the elprev(*) array is
given in table B.2.

b2arr2tens.F This routine transforms the aixal vector into its skew
symmetric tensor form.

b2tens2arr.F This routine performs the inverse operation of the pre-
vious routine. A skew symmetric matrix is transformed
into a axial vector.

b2ep89cspat.F  The constitutive matrix C is created in this subroute.
The matrix is first written in the moving frame. It is
transformed into the spatial base with use of the rota-
tion tensor A.
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b2ep89gstif .F  The geometric stiffnes matrix B is created in this rou-
tine.

b2ep89xi.F Construction of the first differential operator E accord-
ing to equation (3.102).

b2ep89psi.F Construction of the second differential operator ¥ ac-
cording to equation (3.97).

b2epbeamrot.F  The calculations of the updated rotation tensor, as well
as the spatial strain and curvature vector are done in
this subroutine. This routine can also be used by the
feature 3 node element

b2multmtv.F This subroutine is a variant of the b2multmv.F and is
able to multiply a transposed matrix by a vector.

C.3 Transient Solver B2TRANS

In this section the changes to the input processor and the new source file for
B2TRANS are listed.

Filename Description

b2ipdyna.F The dynamic strategy parameters are extended with
a number of new variables, such as DT for the initial
timestep, METHOD to choose the LMS scheme that must
be used, variables to determine the Rayleigh constants,
ALFA and BETA and variable to determine the presence
of the initial displacements, initial velocities and force
function.

b2maputil.F A new history function is added in this routine. Apart
from the trigonemetric functions and step functions, the
SLOPE function is available. The slope function is a
linear increasing (decreasing) function.

b2pclmap.F The PCL input command for the slope function is
added.
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Created source files

Filename Description

b2trans.F Main file. In this file all the memcom data base com-
mands are intialized, the input is read and the actual
calculations are started.

b2transcm.F Command module. In this subroutine the actual tran-
sient calculations are executed. Within this source file,
a number of specific subroutines can be distinguished.
The calculations are initiallized in the main routine
is b2transcm. The history vectors are calculated in
b2trlms. The Jensen equation is also set up in this
routine. The linear or nonlinear system of equation is
solved in b2trlin or b2trnonl respectively.

b2getdyna.F Memcom related file. The dynamic analysis parameters
are read from the dataset DYNA in the archival database
and stored in common blocks.

b2transdyna.F In this file the dthe PCL are read.

b2putdyna.F PCL related file. The dynamic analysis parameters
obtained in the PCL command line are stored in the
dataset DYNA.

b2setdynasol.F In this routine all additional data of a single timestep,
such as current time, kinetic energy and convergence
status is written to the descriptor table of the idsplace-
ment data set DISP.GLOB.n.

C.4 Miscellaneous

A number of files have been altered for various purposes. Most of the files
contain the element mass matrix description for the cable and the fintie rotation
shell elements.

Filename Description

b2mp .F Previously, in the construction of the mass matrix, the
element prevariational package could not be used. After
a small adjustment, the dataset PREV is read and stored
as the array elprev(*).
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b2mp39.F Mass matrix of the 2 node nonlinear cable element (C2)
This reduced lumped diagonal mass matrix is stored as
a consistent mass matrix in order obtain a skylined mass
matrix of the same size as the stiffness mastrix.

b2mp91.F Mass matrix of the Q4N.REBEL 4 node shell element, see
b2mp39.F

b2mp92.F Mass matrix of the Q8N.REBEL 8 node shell element, see
b2mp39.F

b2mp93.F Mass matrix of the QON.REBEL 9 node shell element, see

b2mp39.F




