
Mode-Jumpingwith B2000J.J.C. Remmers

Delft University of TechnologyFaculty of Aerospace Engineering



Graduation Committee� Dr. ir. E. Riks 1) Thesis advisor� Prof. Dr. J. Arbocz 1)� Ir. G. Rebel 1)� Dr. ir. A. de Boer 2)1) University of Technology Delft2) National Aerospace Laboratory (NLR)

The graduation project which is describedin this thesis is performed at the depart-ment of Aerospace Structures and Com-putational Mechanics of the faculty ofAerospace Engineering at Delft Universityof Technology in the period July 1997-October 1998.This report contains 178 pages.



3Opdracht



4



Contents
1 Introduction 191.1 The B2000 Platform . . . . . . . . . . . . . . . . . . . . . . . . . 201.1.1 The Processors . . . . . . . . . . . . . . . . . . . . . . . . 201.1.2 The Elements . . . . . . . . . . . . . . . . . . . . . . . . . 201.1.3 The MEMCOM data base manager . . . . . . . . . . . . . 211.1.4 Post Processing . . . . . . . . . . . . . . . . . . . . . . . . 211.2 Current Developments in B2000 . . . . . . . . . . . . . . . . . . . 211.3 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . 221.4 Overview of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 232 A 2-dimensional beam 252.1 Kinematic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 262.1.1 Deformations . . . . . . . . . . . . . . . . . . . . . . . . . 262.1.2 Strain and Curvature . . . . . . . . . . . . . . . . . . . . 272.1.3 Bernoulli Hypothesis . . . . . . . . . . . . . . . . . . . . . 282.1.4 Timoshenko Beam . . . . . . . . . . . . . . . . . . . . . . 282.2 Mechanical Model . . . . . . . . . . . . . . . . . . . . . . . . . . 292.2.1 Constitutive Relations . . . . . . . . . . . . . . . . . . . . 292.2.2 Internal Energy . . . . . . . . . . . . . . . . . . . . . . . . 292.3 Finite Element Description . . . . . . . . . . . . . . . . . . . . . 312.3.1 Interpolation functions . . . . . . . . . . . . . . . . . . . . 312.3.2 Membrane Locking . . . . . . . . . . . . . . . . . . . . . . 322.3.3 First and Second Variation . . . . . . . . . . . . . . . . . 352.4 Numerical Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . 372.4.1 Transformation Matrix . . . . . . . . . . . . . . . . . . . . 372.4.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . 383 A 3-dimensional beam element 393.1 Analytical Derivation . . . . . . . . . . . . . . . . . . . . . . . . . 393.1.1 Kinematic Description . . . . . . . . . . . . . . . . . . . . 393.1.2 Strain and Curvature . . . . . . . . . . . . . . . . . . . . 413.1.3 Balance Equations . . . . . . . . . . . . . . . . . . . . . . 423.1.4 Constitutive Equations . . . . . . . . . . . . . . . . . . . . 453.2 Finite rotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463.2.1 Small Rotations . . . . . . . . . . . . . . . . . . . . . . . 475



6 CONTENTS3.2.2 Large Rotations . . . . . . . . . . . . . . . . . . . . . . . 483.2.3 Rodrigues Formula . . . . . . . . . . . . . . . . . . . . . . 503.2.4 The Exponential Form . . . . . . . . . . . . . . . . . . . . 513.2.5 Compound Rotations . . . . . . . . . . . . . . . . . . . . 513.3 Internal Forces and Sti�ness . . . . . . . . . . . . . . . . . . . . . 523.3.1 Admissible Variations . . . . . . . . . . . . . . . . . . . . 523.3.2 Linearization . . . . . . . . . . . . . . . . . . . . . . . . . 533.3.3 Weak Form of Balance Equations . . . . . . . . . . . . . . 543.3.4 Linearization of the Weak Form . . . . . . . . . . . . . . . 553.4 Numerical implementation . . . . . . . . . . . . . . . . . . . . . . 563.4.1 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . 563.4.2 Interpolation Functions . . . . . . . . . . . . . . . . . . . 583.4.3 Numerical Integration . . . . . . . . . . . . . . . . . . . . 603.4.4 Updating the Con�guration . . . . . . . . . . . . . . . . . 613.4.5 Transformation Matrix . . . . . . . . . . . . . . . . . . . . 623.5 Locking Phenomena . . . . . . . . . . . . . . . . . . . . . . . . . 643.5.1 Shear Locking . . . . . . . . . . . . . . . . . . . . . . . . . 643.5.2 Reduced Integration . . . . . . . . . . . . . . . . . . . . . 653.5.3 Membrane Locking . . . . . . . . . . . . . . . . . . . . . . 663.5.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . 663.6 Element Mass Matrix . . . . . . . . . . . . . . . . . . . . . . . . 663.7 Closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 674 The Implicit Time Integration Solver 694.1 The Equations of Motion . . . . . . . . . . . . . . . . . . . . . . 704.1.1 Loading and Initial Conditions . . . . . . . . . . . . . . . 704.1.2 Sti� Equation . . . . . . . . . . . . . . . . . . . . . . . . . 714.1.3 Rayleigh's Damping Coe�cient . . . . . . . . . . . . . . . 714.1.4 Solution Strategies . . . . . . . . . . . . . . . . . . . . . . 724.2 Linear Multi-step Methods . . . . . . . . . . . . . . . . . . . . . 724.2.1 General Form of a Linear Multi-step Scheme . . . . . . . 734.2.2 Spectral Analysis . . . . . . . . . . . . . . . . . . . . . . . 744.2.3 Stability Regions of LMS Schemes . . . . . . . . . . . . . 764.2.4 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . 794.2.5 Nonlinear Stability . . . . . . . . . . . . . . . . . . . . . . 804.3 Selection of an Appropriate LMS . . . . . . . . . . . . . . . . . . 804.3.1 Trapezoidal Rule . . . . . . . . . . . . . . . . . . . . . . . 804.3.2 Gear's Method . . . . . . . . . . . . . . . . . . . . . . . . 814.3.3 Park's Method . . . . . . . . . . . . . . . . . . . . . . . . 824.3.4 Cold Restart Conditions . . . . . . . . . . . . . . . . . . . 854.3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 864.4 Implementation of the LMS method . . . . . . . . . . . . . . . . 864.4.1 Jensen's Transformation Algorithm . . . . . . . . . . . . . 864.4.2 Prescribed Displacements . . . . . . . . . . . . . . . . . . 884.4.3 The General Procedure . . . . . . . . . . . . . . . . . . . 904.4.4 Additional Calculations . . . . . . . . . . . . . . . . . . . 914.5 Nonlinear Solution Techniques . . . . . . . . . . . . . . . . . . . 92



CONTENTS 74.5.1 Single Degree of Freedom Systems . . . . . . . . . . . . . 924.5.2 System of Equations . . . . . . . . . . . . . . . . . . . . . 934.6 Implementation in the Nonlinear Jensen Equation . . . . . . . . 944.6.1 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . 944.6.2 Jensen Equation . . . . . . . . . . . . . . . . . . . . . . . 964.6.3 Compound Rotations . . . . . . . . . . . . . . . . . . . . 964.6.4 Converge Criteria . . . . . . . . . . . . . . . . . . . . . . . 974.6.5 Time Step Control . . . . . . . . . . . . . . . . . . . . . . 974.7 Closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 985 The Mode-jumping Phenomenon 995.1 The Quasi-Static Solution . . . . . . . . . . . . . . . . . . . . . . 1005.1.1 Riks' Path Following Technique . . . . . . . . . . . . . . . 1015.1.2 Possible Solutions . . . . . . . . . . . . . . . . . . . . . . 1035.1.3 Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . 1055.2 The Transient Solution . . . . . . . . . . . . . . . . . . . . . . . . 1075.2.1 Initial Values . . . . . . . . . . . . . . . . . . . . . . . . . 1075.2.2 Damping . . . . . . . . . . . . . . . . . . . . . . . . . . . 1105.2.3 The Second Stable Path . . . . . . . . . . . . . . . . . . . 1115.2.4 Restarting the Continuation Method . . . . . . . . . . . . 1115.3 Closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1126 Numerical Examples 1136.1 Nonlinear Beam Elements . . . . . . . . . . . . . . . . . . . . . . 1136.1.1 Linear Deection Test . . . . . . . . . . . . . . . . . . . . 1146.1.2 Large Deection of a Cantilever Beam . . . . . . . . . . . 1166.1.3 Pure Bending of a Cantilever Beam under a Moment Load1176.1.4 Euler Buckling at Di�erent Slendernesses . . . . . . . . . 1186.1.5 Buckling of a Hinged Right-angle Frame under a FixedLoad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1216.2 Linear Transient Analysis . . . . . . . . . . . . . . . . . . . . . . 1216.2.1 A Flat Plate with In-plane Initial Velocities . . . . . . . . 1216.2.2 Eigenfrequencies of a Helicopter Rotor . . . . . . . . . . . 1236.3 Nonlinear Transient Analysis . . . . . . . . . . . . . . . . . . . . 1246.3.1 Stretched Cable Submitted to Transverse Loading . . . . 1246.3.2 Snap-through of a Cylindrical Shell . . . . . . . . . . . . . 1266.4 Mode Jumping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1286.4.1 A Plane Frame Structure . . . . . . . . . . . . . . . . . . 1296.4.2 The Verolme Panel . . . . . . . . . . . . . . . . . . . . . . 1307 Conclusions and Recommendations 137A Users manuals 147A.1 Nonlinear Beam Elements . . . . . . . . . . . . . . . . . . . . . . 147A.2 B2TRANS, The Transient Analysis Solver . . . . . . . . . . . . . 149A.3 Dynamic Analysis Parameters DYNA . . . . . . . . . . . . . . . 151A.4 Known Bugs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152



8 CONTENTSA.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152A.5.1 Large Deection of a Cantilever Beam . . . . . . . . . . . 153A.5.2 The Verolme Panel . . . . . . . . . . . . . . . . . . . . . . 155B Numerical Implementation 159B.1 Beam Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159B.1.1 Internal Forces and Sti�ness Matrix . . . . . . . . . . . . 160B.1.2 Mass Matrix . . . . . . . . . . . . . . . . . . . . . . . . . 160B.1.3 Element Prevariational Data Packages . . . . . . . . . . . 161B.1.4 Element Updated Reference Frame . . . . . . . . . . . . . 161B.2 B2TRANS macro-processors . . . . . . . . . . . . . . . . . . . . . 162B.2.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . 163B.2.2 Time Integration Process . . . . . . . . . . . . . . . . . . 165B.2.3 Solution Techniques . . . . . . . . . . . . . . . . . . . . . 166B.2.4 Additional Calculations . . . . . . . . . . . . . . . . . . . 167B.3 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168C Source Code 173C.1 2 dimensional beam element, B2.EP . . . . . . . . . . . . . . . . 173C.2 3 dimensional beam element, B2.NL . . . . . . . . . . . . . . . . 174C.3 Transient Solver B2TRANS . . . . . . . . . . . . . . . . . . . . . 176C.4 Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177



Glossary of Symbols
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Abstract
In the past years a lot of research has been done to analyse buckling behavior ofstructures in general and post-buckling behavior in particular. A lot of attentionis paid to the mode-jumping phenomenon. When a structure is loaded beyondthe limit point, the deformation mode jumps to another stable mode. Thisattends large velocities and is therefore a purely dynamic process. In �niteelement (FEM) analysis this behavior can be simulated with a transient solvingroutine.In this thesis the numerical aspects of the mode-jumping process of beamstructures are considered. For this purpose, two new features are implementedin the �nite element package B2000; a set of beam elements and a nonlineartransient solver. In principle, the development of both can be seen as twodi�erent things.The three beam elements can be divided into two categories. The 2-dim-ensional beam elements B2.EP and B2.EP+ are based on papers by Erikssonand Pacoste [5, 6]. The strain and bending is based on a model by Reissner.The behavior of this type of beam is even in the post buckling region still cor-rect as opposed to the beams governing the Lagrange-Green strain formulation.Furthermore the Bernoulli hypothesis is applied. This implies that the beamscannot deform in a pure shear state. Due to the absence of out-of-plane defor-mations and the corresponding 3-dimensional rotation tensor, the theoreticalbackground is rather straightforward. The 2-dimensional beam elements serveas a starting point for the development of a fully 3-dimensional beam.The 3-dimensional beam element B2.NL is based on papers by Simo etal. [29, 30]. It is a so-called �nite rotations element: the nonlinear behaviorof these elements is correct for large rotations. It can therefore be added to thesame family of elements to which Rebel's shell elements are reckoned. The de-scription of the rotation is based on the classical formulation which is proposedby Rodrigues [3]. The strains are described using Reissner's formulation, justas with the 2-dimensional elements. The Bernoulli hypothesis is not used. Atthe moment, the material properties are fully elastic.As opposed to the 2-dimensional beam element, the 3-dimensional elementdoes not work properly in nonlinear calculations at the moment. There may betwo reasons for this. First, there might be some locking phenomena (membranelocking) which has not been tackled properly. Second, the description of thethree dimensional rotations might be wrong.All beam elements have the same formulation for the mass matrix. The total



14 ABSTRACTmass of the beam is divided over the 2 nodes. The inertia terms (the rotationalmass) are neglected, Although this formulation is simpli�ed, it appeared to bevery e�ective in transient analyses. This mass representation is therefore alsoapplied to Rebel's shell elements and the cable elements in B2000.The implicit transient processor B2TRANS is based on the B2IDTI processor,written by K. Yildirim [34]. The equations of motion are solved by a spe-cial group of implicit time integration methods, the linear multi-step (LMS)methods. Using Jensen's algorithm [13] the system of second order di�erentialequations is transformed into a �rst order one. Park's LMS method is usedto transform this ODE into a nonlinear system of equation, which is solvediteratively, using the Newton Raphson method.The simulation of mode-jumping phenomena is described by Riks et al. [26,27, 28]. In his papers he suggests fast and accurate simulation technique. Thestable, pre-buckling deformation behavior, up to the limit points is calculatedaccording to the ordinary Riks' path-following method [25]. As soon as the equi-librium becomes unstable (this can be checked by examining the decomposedsti�ness matrix), the response is calculated with the transient solver. The loadis raised to a level that is higher than the limit load. The structure is releasedfrom this point. Since the corresponding equilibrium is unstable, the structurewill leave this primary path with high velocities and go to a new, stable equi-librium on the secondary stable path with a di�erent deformation mode. Apartfrom the 2-dimensional beam element, it is also possible to perform simulationswith the the �nite rotation shell elements.A number of numerical examples is used to show the reliability of the beamelements and the transient macro-processor. There are also some examplesthat show mode-jumping simulations. As can be seen from the results of thesetests, the new features (except for the nonlinear 3-dimensional element) workdecently. The performances of the new, simpli�ed mass description in mode-jumping simulations are also good.In the near future the solution of the problems with the 3-dimensional beamelement has got the highest priority. Since the element works perfectly in linearanalyses, it is most likely that just some small �xes will be enough. Whenthis is done some other aspects can be improved. All beam elements can beequipped with a plasticity model. The LMS algorithm as implemented in thetransient processor can be adapted in order to be able to calculate dynamicbehavior with large rotations of structures. This also requires a closer look tothe nonlinear mass matrix. The improved elements and processor can be appliedin the continuing research of the mode-jumping phenomenon. Especially theinuence of the initial conditions and the damping constants must be regarded.



Samenvatting
De laatste jaren is er veel onderzoek gedaan naar knik gedrag in het algemeenen naknik gedrag in het bijzonder. Het `mode-jumping' verschijnsel krijgt hier-bij steeds meer aandacht. Wanneer een constructie wordt belast tot voorbij zijnlimietpunt slaat het vervormingspatroon (de `mode') razendsnel om (de `jump')naar een andere, stabiele vervorming. Dit alles gaat gepaard met hoge snelhe-den en is daarom een puur dynamisch proces. In eindige elementen (EEM)berekeningen kan dit gedrag gesimuleerd worden met een transiente oplosme-thode.In dit afstudeerrapport worden de numerieke aspecten van mode-jumpingvan balkconstructies beschouwd. Hiervoor zijn twee nieuwe onderdelen in deEEM code B2000 ge��mplementeerd: een serie balkelementen en een niet-lineairetransiente oplosmethode. De ontwikkeling van deze twee zaken staat in principelos van elkaar.De drie balkelementen kunnen worden onderverdeeld in twee catagorie�en.De twee 2-dimensionale balkelementen B2.EP en B2.EP+ zijn gebaseerd op ar-tikelen van Eriksson en Pacoste [5, 6]. De rek en de buiging is gebaseerd opeen model van Reissner. Het gedrag van dit type balk in het na knik gebied isnog steeds correct, in tegenstelling tot de balken die uitgaan van de klassiekeLagrange-Green rek formulering. Tevens is de Bernoulli hypothese toegepast.Dit betekent dat zuivere afschuif vervorming niet meer mogelijk is maar dat dezewordt omgezet in buiging. Door het ontbreken van uit het vlak verplaatsingenen de daarbij behorende 3 dimensionale rotaties is de theoretische achtergrondvan deze balken tamelijk eenvoudig. De 2-dimensionale balken vormen dan ookeen goed uitgangspunt voor de volledige 3-dimensionale balk.Het 3-dimensionale balk element B2.NL is gebaseerd op artikelen van Simoc.s. [29, 30]. Dit element is een zogenaamd eindige rotaties element. Het niet-lineaire gedrag van dit element is ook bij zeer grote rotaties correct. Het ele-ment kan daarom in principe worden toegevoegd aan de familie van elementenwaartoe ook G. Rebel's schaal elementen behoren [23]. De beschrijving van derotatie is gebaseerd op de klassieke formulering zoals die is voorgesteld doorRodrigues [2]. Net als bij de 2-dimensionale balken is er gebruik gemaakt vanReissner's beschrijving van de rek. De Bernoulli hypothese is niet toegepast.Op het moment zijn alle materiaal eigenschappen van het materiaal lineair eles-tisch.In tegenstelling tot het 2-dimensionale balkelement werkt het 3-dimensionalebalkelement nog niet in het niet-lineaire geval. Dit kan twee oorzaken hebben.



16 SAMENVATTINGEr kan een locking probleem zijn dat niet met de methode van gereduceerdenumerieke integratie opgelost kan worden. Het kan ook zijn dat de beschrijvingvan de 3-dimensionale rotatie tensor niet geheel correct is.Alle balkelementen hebben dezelfde formulering voor de massa matrix. Hierinis de totale massa verdeeld over de beide knooppunten. De traagheidstermen(de massa in de rotatie vrijheidsgraden) zijn verwaarloosd. Dit sterk vereen-voudigde massa model blijkt echter zeer e�ectief bij transiente analyses.De impliciete, transiente processor B2TRANS is gebaseerd op de B2IDTI pro-cessor van K. Yildirim [34]. De basis van deze processor wordt gevormd dooreen speciale groep implicite tijdsintegratie methoden, de lineaire meer stappen(LMS) methode. Met behulp van het algoritme van Jensen [13] wordt het stel-sel tweede orde di�erentiaal vergelijkingen omgezet in een stelsel eerste ordevergelijkingen. Met de methode van Park [7, 20, 21] worden deze di�erentiaalvergelijkingen getransformeerd naar een niet-lineair stelsel, dat wordt opgelostmet de Newton-Raphson methode.Simulatie van mode-jumping verschijnselen is veel beschreven door Riksc.s. [26, 27, 28]. Zijn methode is erop gericht om zo snel en zo nauwkeurig mo-gelijk het verschijnsel te simuleren. Dit betekent dat het stabiele vervormingsgedrag, tot aan het knik punt, met de gebruikelijke Riks' padvolg methodewordt berekend [25]. Zodra het statische evenwicht instabiel wordt (wanneerde stijfheidsmatrix singulier is), wordt er overgegaan op de transiente oplosme-thode. De belasting wordt verhoogd tot boven de limietwaarde en de constructiewordt losgelaten. Omdat bij deze belasting het evenwicht instabiel is, zal deconstructie zich met grote snelheid verwijderen van dit evenwicht en tot rustkomen op een ander stabiel pad met een ander vervormingspatroon. Dit typeberekeningen vereist een aantal aanpassingen in zowel de padvolgmethode (con-tinuatie routine) B2CONT als de transiente processor B2TRANS. Behalve met debalkelementen is het ook mogelijk om mode-jump analyses uit te voeren opschaalconstructies met Rebel's eindige rotatie schaalelementen.Met behulp van een aantal numerieke voorbeelden is tenslotte de werkingvan de balkelementen en de transiente oplosmethode uitgebreid getest. Eenaantal voorbeelden heeft betrekking op het mode-jumping verschijnsel. Uit dezevoorbeelden blijkt dat alle nieuwe toevoegingen, het 3-dimensionale balkelementuitgezonderd, naar behoren werken. Ook de mode-jump analyses kunnen nuworden uitgevoerd, op zowel de 2-dimensionalebalk elementen als de eindigerotatie schaalelementen.In de nabije toekomst zullen eerst de problemen met het 3-dimensionale niet-lineaire balkelement opgelost moeten worden. Omdat het element in het linearegeval werkt zal het slechts om een kleine aanpassing gaan. Daarna kunnen erandere zaken verbeterd worden. Het balk element kan worden uitgerust meteen plasiticiteits model. Het LMS algoritme achter de transiente processormoet zodanig worden aangepast dat het ook voor grote rotaties nauwkeurigeresultaten levert. Hierbij moet ook gekeken worden naar de mogelijkheden vaneen niet-lineare beschrijving van de massa matrix. De verbeterde elementenen de transiente processor kunnen worden ingezet bij het verdere onderzoeknaar mode-jumping. Vooral de invloed van beginvoorwaarden en dempingsconstanten moeten hierbij beschouwd worden.
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1Introduction
Simulation of nonlinear phenomena, such as buckling, post-buckling behavior,dynamic buckling and mode-jumping problems are an important �eld in com-putational mechanics nowadays. The �nite element method (or FEM in short)is frequently used to simulate these nonlinear problems.The main idea behind the �nite element method is the division of a structureinto a number of small, but �nite elements, of which the mechanical propertiescan be derived analytically. This division is often called discretization of thestructure. Due to this discretization, the mechanical behavior of the structurecan be described by a system of equations. The number of equations in thissystem (or so-called degrees of freedom) is proportional to the number of ele-ments that is used in the discrete model. In very accurate models the numberof degrees of freedom can exceed 100,000.A system of equations of this size cannot be calculated by hand. It is there-fore not surprising that the �rst serious applications arose together with thearrival of computer technology in the mid �fties. These computer programswere designed by NASA and were used in research projects. The �rst com-mercial platforms arose around 1970. In the years after, these platforms werefurther developed in order to satisfy speci�c needs. Nowadays, a large num-ber of di�erent programs is available. Some of them can be used for designingpurposes in combination with CAD systems, like MSC NASTRAN, other ones areintended for analysis or scienti�c research, e.g. B2000 and STAGS.The �nite element method is a classical example of an engineering method.It is rather simple and straightforward and does not require mathematical skillsof the user. At the moment it is the most widely used method in computationalmechanics. Also in thermodynamics and acoustics it has become the leadingcalculation method. Strangely enough, �nite element applications penetratedother �elds of physics more slowly. For example in uid dynamics, the �nitedi�erence method is still preferred to the �nite element method.



20 1. INTRODUCTION1.1 The B2000 PlatformThe B2000 �nite element package has been developed in the mid eighties byS. Merazzi and P. Stehlin. They developed B2000 using their experiences withother programs they previously worked with. All these programs had the un-pleasant circumstance that they could not be manipulated at all. The imple-mentation of new elements or solving methods was impossible.To overcome these problems, the B2000 package is not placed in a rigidformat. It is modular, hardware independent and most important it can becustomized by the user to serve its speci�c needs. New solution techniques aswell as element descriptions can be implemented in the platform rather easilyusing the B2000 building blocks. The presence of an independent databasemanager, post-process utilities and a robust equation solver have even lead tothe development of FEM related packages like the explicit B2ETA solver and theoptimization platform B2OPT.Because of these properties, the platform is mainly used in a research envi-ronment. B2000 is used as a testbed at a number of universities and aeronauticalinstitutes in western Europe. Approximately 30 people, among them a numberof students, are improving and adding new features to the package.1.1.1 The ProcessorsThe actual building blocks of B2000 are the processors, which are able to per-form all necessary operations in �nite element calculations. For example, thereis a processor that solves systems of equations by an LDL decomposition (B2ES),there are also processors that assemble the sti�ness matrix of a structure (B2EPand B2EPN).Macroprocessors are integrated sets of algorithms built with the processorsmentioned above. They can be used independently within the B2000 platform.A very important and indispensable macro-processor is the input processorB2IP. It translates the ascii text input �le into the archival database whichis written in a standard B2000 �le format. Every analysis must be startedwith a B2IP session. The obtained database is used by the analysis macroprocessors, that perform the actual computations, for example B2CONT. Thismacro processor is designed for nonlinear analysis based on Riks' path-followingtechnique.1.1.2 The ElementsA variety of elements has already been implemented in the package and theirnumber is still increasing. Besides the traditional elasticity elements (beam,shell and volume elements), acoustic and heat transfer (Laplace-type) elementsare available as well. Some of the elasticity elements are equipped with plasticityor crack models.A new generation of elasticity elements is currently under development byG. Rebel [23]. These �nite rotation shell elements are capable of handlinglarge strains and rotations and are the �rst ones that deal with the problemsconcerning the so-called drill sti�ness.



1.2. CURRENT DEVELOPMENTS IN B2000 211.1.3 The MEMCOM data base managerAll data produced by the B2000 platform is managed by MEMCOM [18], an in-dependent database manager, developed by S. Merazzi. The data is stored ina binary format, instead of ascii text. The biggest advantage of this binaryformat is that it is much more compact than ascii and less sensitive for I/Oerrors.All MEMCOM operations, e.g. read and right tasks, can be controlled in theB2000 source code by using ordinary C or Fortran subroutine calls. Within thedatabase, all data is organized in folders, the datasets. The B2000 package usesa hierarchical notation method. For example, the displacements in the 6th timestep are stored in the dataset,DISP.GLOB.6where DISP is the name of the data set. The second entry is reserved for thename of the coordinate system in which the data is expressed, in this case aglobal coordinate system. The last entry in this example represents the cy-cle number. Additional information to a certain dataset can be stored in adescription table.Besides the standard read and write functions, MEMCOM can also be used tomanipulate data in the database. For example, when two datasets need to besummed, it is not necessary to read both datasets, add them and write theresult back to the database. The summation can be done within the databaseitself.Since all data is stored in a binary format, it is not possible to view thecontents of the database by using an ordinary text-editor. An additional pro-gram that can be used to look in the database is the monitor program or itsgraphical version Xmon. These programs can also be used to manipulate thedatasets.1.1.4 Post ProcessingThe results in the database can be presented in a graphical lay-out using thepost-processing programs B2BASPL and B2XY. The B2BASPL program visualizesall possible results (e.g. deformations and stresses) by means of various tech-niques such as colored contour plots. The package is optimized for high perfor-mance graphic workstations, like Silicon Graphics systems. History functionsor xy plots can be made with the B2XY package.It is of course possible for the user to write his own post-processing programwithin the B2000 environment. Data from the database can be read usingMEMCOM commands and written in a di�erent format. In this report, the data isobtained from the computational database with a new macroprocessor B2GNU.The gnuplot package is used to plot the results.1.2 Current Developments in B2000As said before, the B2000 package is mainly used in a research environment.As a result of this, the package is always under development and new features



22 1. INTRODUCTIONare added continuously. In the last years the number of institutes participatingin the B2000 project has increased rapidly.At SMR, a consulting company founded by S. Merazzi and P. Stehlin, alldevelopments on B2000 are gathered for further distribution. Furthermore, theMEMCOM package as well as B2BASPL is under development at this company. TheNational Aerospace Laboratory (NLR) coordinates development on the packagein the Netherlands and collaborates with both Universities in Delft and Twente.The optimization routine B2OPT is created here as well as the macro-processorB2TEST. This last package can be used to validate new versions of the B2000package. Germany's national aerospace research center (DLR) uses B2000 as aplatform to do their research of thermal analyses.At the �Ecole Polytechnique F�ed�erale de Lausanne, optimization and par-allelization of the B2000 source code is one of the main topics. Currently,a parallel version of the explicit time integration method B2ETA is under de-velopment. The University of Twente uses the package for their work in the�eld of acoustics. A number of acoustic and viscous elements are developed incooperation with the NLR. At the faculty of Aerospace Engineering in Delftthe developments are mainly focussed on nonlinear structural analysis such asbuckling behavior, plasticity models and crack propagation.1.3 Research ObjectivesThe main objective of this research is the simulation of mode jumps in beamstructures. This requires two new numerical models. First an appropriate non-linear beam element must be derived. This involves the derivation of a residual(internal) forces vector and a sti�ness matrix. Since mode jumps are transient(dynamic) processes a mass matrix must be derived as well. Second, in orderto calculate the actual jump, a time integration method must be chosen. Sincefor the calculation of modejumps also quasi-static calculations are required,this method must be based on the same numerical principles as the continua-tion routine. This implies that the time integration method (transient method)must be an implicit method.Both the beam elements and the time integration method will be imple-mented in the B2000 package. In order to improve the suitability, the newfeatures in B2000 must be widely applicable within the package. This meansthat the beam elements, as well as the transient processor must also be availablefor other analyses.After all, this study covers two extreme regions of computational mechanics.The development of the beam elements is mainly based on mechanical andmaterial principles as opposed to the more mathematical founded transientmethod. Because of this, this report also provides a good survey of the di�erentaspects of �nite element calculations.



1.4. OVERVIEW OF THE THESIS 231.4 Overview of the ThesisThe thesis can be divided into 2 main parts. In the �rst part the development ofthe beam elements is discussed. In chapter 2 two 2-dimensional beam elementsare derived. Both beams are based on papers by Eriksson and Pacoste [5, 6]. Inchapter 3 the two dimensional beam element is extended to a full 3-dimensionalbeam element. The kinematics of this beam, as well as the numerical implemen-tation is based on the work of Simo and VuQuoc [29, 30]. In the second partsolution techniques to solve the mode-jumping process are described. Chapter4 discusses the transient time integration method [13, 21] and the developmentof the B2000 macroprocessor B2TRANS. In chapter 5 the techniques to calculatemode-jumps are proposed.Numerical examples to illustrate the capacities of the beam elements and thetransient processor B2TRANS are given in chapter 6. The numerical examples arecompared to analytical solutions, results obtained from literature or other �niteelement packages. The conclusions and recommendations are given in chapter7. The appendices are reserved for additional information about the developedprograms. Appendix A contains a user manual for the transient processor. Ashort outline of the syntaxis of the source code of B2TRANS is given in B. Finallya list of all created and modi�ed Fortran source �les is printed in appendix C.Throughout this thesis, a consistent notation is used in order to make a dis-tinction between scalars, vectors and matrices. All scalars are written in thinletters, the vectors are denoted by small bold letters, matrices are in bold capi-tals. These conventions also holds for vectors and tensors that are prescribed onthe SO(3) space which will be discussed in chapter 3: Skew-symmetric tensorsare written in bold capitals, their axial vectors in bold small letters.
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2A 2-dimensional beam
In the development of a fully nonlinear, 3-dimensional beam, the 2-dimensionalbeam is a good starting point. Because of the small number of degrees offreedom (six, i.e. three per node) and the fact that there are no zero-energymodes (like for example in cable or rod type elements), this beam model israther straightforward. Complications due to the description of 3-dimensional�nite rotations of the beam do not appear either.However, strictly speaking, the 2-dimensional beam is just of academic in-terest. It is obvious that it is not possible to use it in ordinary 3-dimensionalstructures. Nevertheless, due to its surveyability, the 2-dimensional beam modelis often used to test new �nite element solution techniques. For example, thenew implicit time integration method B2TRANS, which will be discussed in chap-ter 4, is tested for its reliability with this element. Also literature provides alarge amount of examples and `bench mark tests' of nonlinear �nite elementcalculations with plane beam structures.The beam elements described in this chapter are �nite strain beam modelsintroduced by Reissner and further worked out by Eriksson and Pacoste [5, 6].At this moment, these elements are considered as quasi-static beams. Thismeans that there is no representation for the mass derived yet. In a later stage,when the time integration method will be discussed, a proper formulation forthe mass will be added.The beams are assumed to be slender. This means that, compared to theirlength, the radius of gyration, r =pI=A is very small, r=L << 1. Furthermore,the beam is made of an isotropic linear elastic material. This implies thatYoung's modulus E is constant for all deformations and that there are no crosscoupling terms between the various deformation modes.
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E1e1e2
E2

Typical cross section
t2(s; t) t1(s; t)

Figure 2.1: Geometrical conventions for the 2-dimensional beam2.1 Kinematic ModelSince the beam is assumed to be slender, it can be considered as a one dimen-sional object in a 2-dimensional space. All variables of the beam are expressedin terms of the beam mid axis, along which the arclength parameter s is de-�ned, s 2 [0; L] where L is the length of the beam. Note that in a deformedcon�guration this beam mid axis, the dash-dotted line in �gure (2.1), can becurved.In each point of the beam mid axis, a typical cross section is de�ned, denotedby the dashed line in the �gure. In undeformed position, the cross section isperpendicular to the beam axis. There are two orthonormal vectors attached tothis typical cross section, t1(s; t) and t2(s; t), both a function of the arclengths and time t 2 R+ . The vector t1(s; t) is always perpendicular to the crosssection. In the undeformed state, the direction of these vectors is equal to thedirection of the element local base vectors e1 and e2.t1(s; 0) = e1; t2(s; 0) = e2 (2.1)The vector t1 need not be tangential to the beam axis in deformed position. Inthe sequel, the time parameter t will be omitted.2.1.1 DeformationsThe deformation of the beam is fully described when the position of the beamaxis and the rotation of the cross section are known as a function of the arclengths. The position of the beam axis in the 2-dimensional space is denoted bythe vector r(s), as shown in �gure (2.2). The orientation of the typical crosssection (the vectors t1(s) and t2(s)) is described by the angle �(s). The set ofpossible deformed con�gurations �(s) = (r(s); �(s)) of the 2-dimensional beamis denoted byC2D = f� = (r; �)jr : (0; L)! R2 ; � : (0; L)! Rg (2.2)
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�(s)t1(s)t2(s)

e1(s)s e2(s)r(s)w(s)
u(s)Figure 2.2: Description of the displacements for the 2-dimensional beamIn this case, it is possible to express the vector r in terms of its vector com-ponents with respect to the �xed base ei, according to the deformations in the�gure.r = [s+ u(s)]e1 + w(s)e2 (2.3)The direction of the coordinate axes attached to the cross-section can be ex-pressed in terms of �(s).t1(s) = cos �(s)e1 + sin �(s)e2 (2.4)t2(s) = � sin �(s)e1 + cos �(s)e2 (2.5)Both t1(s) and t2(s) remain orthonormal.2.1.2 Strain and CurvatureIn order to describe the strains in the beam, the strain model as proposed byReissner is chosen. The strains are �rst de�ned in the moving frame.r0 = (1 + �)t1 + t2 (2.6)where � is the normal strain and  is the shear strain. The operator ( )0 isthe derivation of the vector with respect to the arc-length parameter dds . Thecurvature � is by de�nition equal to the derivative of the rotation of the crosssection.� = �0 (2.7)The rotation � and the curvature � are invariant of the coordinate system. Thiscan be seen as follows. The rotation is de�ned around a �ctitious out-of-plane



28 2. A 2-DIMENSIONAL BEAMvector, say t3, perpendicular to both t1 and t2. However, since all deformationsof the beam are de�ned in a 2-dimensional space, the direction of this �ctitiousvector does not change at all. In other words the identity t3(s; t) � t3(s; 0) � e3holds for all s 2 [0; L] and t 2 R+ . All variables in this direction are thereforeinvariant.The expressions for � and  can be found by taking the derivative of equation(2.3) and rewriting the result in terms of the moving frame ti(1 + u0) � cos �� sin ��+ w0 �sin �cos �� = �1 + � � (2.8)After regrouping the terms of this equation, the strain and curvature can bewritten as follows� = (1 + u0) cos � + w0 sin � � 1 = w0 cos � � (1 + u0) sin �� = �0 (2.9)2.1.3 Bernoulli HypothesisIn order to avoid shear-locking problems it is convenient to apply the Bernoullihypothesis. The beam model becomes much simpler by assuming that thederivative of the position vector r0 is in all cases tangential to the director t1that is attached to the cross-section of the beam, i.e.r0 = (1 + �)t1 (2.10)This implies that the mid axis of the beam will always be perpendicular to thecross-section. As a result of this the shear strain is always equal to zero,  = 0.Rewriting equation (2.10)�1 + u0w0 � = (1 + �) �cos �sin �� (2.11)This equation gives the following two, independent expressions for the axialstrain �� = (1 + u0 � cos �) 1cos � ; � = (w0 � sin �) 1sin � (2.12)The curvature � remains unchanged.2.1.4 Timoshenko BeamThe curvature of the beam is represented by the derivation of the rotation ofthe cross-section. This is a quite good approach of the curvature. However, anexact model has been presented by Timoshenko [9]. He assumed the curvatureto be the inverse of the radius of curvature of the beam.�T = 1R = �0jjr0jj (2.13)



2.2. MECHANICAL MODEL 29where jjr0jj is the eucledian norm of the strain vector: (r0 �r0)1=2. Evaluation ofthis expression yields�T = �0 cos �1 + u0 (2.14)2.2 Mechanical ModelNext, the kinematical behavior must be translated into mechanical behavior.First, the constitutive relations must be derived. Then, the strain energy canbe calculated.2.2.1 Constitutive RelationsThe beam can be deformed in two ways. It can be enlarged (axial strain)and it can be bent (curvature). Since the beam is presumed to be made of alinear elastic material, there are no cross-coupling e�ects between these modes.This implies that the constitutive relations or stress-strain relations are rathersimple. In a matrix formulation, they can be written as�NM� = �EA 00 EI� �"�� (2.15)where N and M are the internal axial force and bending moment respectively;E is the Young's modulus1. A is of course the beam's cross section and I themoment of inertia. Although the deformation of the beam is described in a 2-dimensional space, both A and I are `ordinary' 3-dimensional quantities. Thedimension of A is [mm2] and I is [mm4].2.2.2 Internal EnergyThe strain energy (or elastic energy) is the mechanical energy stored in a de-formed structure. When the strains remain within the elastic boundaries ofthe material, which is always the case since a linear elastic constitutive modelis assumed, the strain energy is equal to the work done by the external forcesduring their application. When the structure is not loaded (or undeformed) thestrain energy is equal to zero.The strain energy 	 of the beam, as a function of the two deformationmodes, can be written as	 = 12 LZ0 EA�2 +EI�2ds (2.16)1Note that both the Poisson's ratio � and the shear modulus G are not present in thisequation. This is of course a result of the Bernoulli hypothesis



30 2. A 2-DIMENSIONAL BEAMSubstituting the axial strain and curvature equations gives the following twointegral equations:	 = 12 LZ0 EA(1 + u0 � cos �)2 1cos2 � +EI(�0)2ds (2.17a)	T = 12 LZ0 EA(1 + u0 � cos �)2 1cos2 � +EI ��0 cos �1 + u0 �2 ds (2.17b)It is obvious that these expressions are not useful in practice, since for angles� = (2k + 1)�; k 2 Z the axial strain terms become singular. The alternativeformula � = (w0 � sin �) 1sin � can neither be used for the same reason. It is nec-essary to derive a new expression for the axial strain using the two equivalentrelations, as derived in equation (2.12).In the energy equation, the axial strain just appears as a squared.�2 = (1 + u0 � cos �)2 1cos2 � (2.18)The square of the alternative formulation yields�2 = (w0 � sin �)2 1sin2 � (2.19)By using the identity cos2 � + sin2 � � 1, this last equation can be written as�2 = (w0 � sin �)2 11� cos2 � (2.20)Regrouping yields�2 � �2 cos2 � = (w0 � sin �)2 (2.21)From equation (2.18) it can be seen that�2 cos2 � = (1 + u0 � cos �)2 (2.22)Substituting (2.22) into (2.21) gives the following expression for the square axialstrain:�2 = (1 + u0 � cos �)2 + (1� sin �)2 (2.23)At this point the internal energy equation for both the simpli�ed and the Tim-oshenko beam can be formed2.	 = 12 LZ0 EA[(1 + u0 � cos �)2 + (1� sin �)2] +EI(�0)2ds (2.24a)	T = 12 LZ0 EA[(1 + u0 � cos �)2 + (1� sin �)2] +EI ��0 cos �1 + u0 �2 ds(2.24b)2In literature, the Bernoulli axial strain is sometimes. wrongly, divided into a pure strainpart and a `pseudo shear strain' part, according to �2 = ��2 + �2, where ��2 = (1 + u0 � cos �)2and �2 = (1� sin �)2. The elastic energy is than written as 	 = R L0 EA��2 +EA�2 +EI�2ds.It need no discussion that this notation is incorrect and confusing.
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E2 w1

E1 �2�1 u1 node 2node 1 u2w2
Figure 2.3: Finite element representation of the 2 node, 2-dimensional beamelement2.3 Finite Element DescriptionBoth beam descriptions will be implemented as a 2 node beam element. Sincethe beam is de�ned in a 2-dimensional space, each node has 3 degrees of freedom(d.o.f.'s); two translations, uI and wI in the E1- and E2-direction resp. andone rotation, �I . The subscript I denotes the node number (I = 1; 2) as can beseen in �gure 2.3.2.3.1 Interpolation functionsNormally, linear interpolation functions are used to describe the relation be-tween the displacements of the nodes and the displacements in an arbitrarypoint on the beam's mid axis. In this case a method introduced by Antman [5]is used instead. Antman proposed a set of 4 parameters d1 : : : d4 which arefunctions of the nodal displacements and rotationsd1 = arctan� w2 � w1L+ u2 � u1� ; d2 = �1 � �22 ; (2.25)d3 = �1 + �22 � d1; d4 = u2 � u1L (2.26)Note that Antman's alternative deformation parameters are based on linearextrapolation functions. The derivative of the axial displacement u0 can beexpressed in terms of these parameters.u0 = d4 (2.27)Since the kinematics of the beams are based on the Bernoulli hypothesis thelateral displacement w can be written as a function of the axial displacementusing the 2 expressions for axial strain, equation (2.12).w0 = (1 + u0) tan � (2.28)In terms of Antman's parameters,w0 = (1 + d4) tan d1 (2.29)
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� = �r + �e�r E1

E2
Figure 2.4: Deformed �nite element model of a 2-dimensional beamFor reasons of simplicity, the rotation of the beam's cross section � can bedivided into a rigid rotation part �r and an elastic rotation part �e, accordingto � = �r + �e (2.30)The rigid rotation actually describes the position of the beam in the elementlocal coordinate frame Ei, i.e. the angle of a �ctitious line between the 2 nodesand the original position of the beam. The �e term is the rotation of themid surface compared to this �ctitious line, �gure 2.4. In terms of Antman'sparameters, these rotation can be written as.�r = d1; �e = �1� 2 sL� d2 +�1� 6 sL + 6 s2L2� d3 (2.31)The curvature �0 can be found by derivation of the expression for � with respectto the arclength parameter.�0 = � 2Ld2 +�� 6L + 12sL2 � d3 (2.32)All displacements, the rotation and their derivatives can be �lled in the energyequation. When this is done, it will appear that there are some severe problemscaused by membrane locking.2.3.2 Membrane LockingA very severe kind of problems in �nite element development are locking prob-lems. In principle, beam elements can su�er from two of these problems, shearlocking and membrane locking. Since the current beam model have been de-rived using the Bernoulli hypothesis, the shear mode is neglected. Shear lockingis therefore not possible. The other type, membrane locking can still occur. Inorder to explain this problem, a de�nition by Ibrahimbegovi�c and Frey [12] isused.The membrane locking phenomenon stems from the inability to capture astate of pure bending inextensional deformation. In an equation form, the beam



2.3. FINITE ELEMENT DESCRIPTION 33aLFigure 2.5: Curved 2 node beam elementis unable to bend while�(s) = 0; 8s (2.33)As opposed to the shear locking problem, which will be discussed in the nextchapter, the membrane locking problem only occurs when the beam is alreadybent. In this case the angle that describes the rotation is no longer equal to 0.For the undeformed beam � = 0, the strain is equal to� = u0 (2.34)When the beam is slightly curved, the membrane strain can be written as� = u0 + �f 0 (2.35)Note that the term sin � is replaced by � which is valid for small rotations. Thegeometry of the curved beam is denoted by the term f 0. As can be seen in�gure 2.5, this parameter can be written asf = N2(s)a; f 0 = dfds = aL (2.36)The discrete approximation of the axial strain for a curved beam becomes� = 1L(u2 � u1) + a2L(�1 + �2) + s a2L(�2 � �1) (2.37)The only way to bend the beam while the axial strain remains 0 is when �1 = �2is equal to zero. This means that the beam is not curved.There are many methods to solve this problem. Most of them assumethat the beam is integrated numerically, for example using a Gauss integra-tion method. Since this beam will be integrated analytically, other techniquesmust be found. The rotation of the beam � can said to be a linear extrapo-lation. By taking the average of the rotation, in principle the rotation of thebeam in the mid point at s = 12L is calculated. Replacing the rotation termsby the average rotation �av gives the following equation�̂ = 1L(u2 � u1) + a�avL (2.38)It can be seen that it is now possible to bend the beam, while the axial strainremains equal to 0.



34 2. A 2-DIMENSIONAL BEAMThe average of an arbitrary function f(s) in a certain domain s 2 [0; L] canbe calculated as followsfav = 1L LZ0 f(s)ds (2.39)In the energy equations, � always appears as a trigonometric function, i.e. cos �or sin �. The averages of these functions arecos �av = 1L LZ0 cos �ds (2.40)
sin �av = 1L LZ0 sin �ds (2.41)Remember that � is constructed from a rigid component �r and an elasticcomponent �e.In order to reduce the amount of calculations, a �rst simpli�cation mustbe made. It can be assumed that the elastic rotation of the beam remainsconsiderable small, �e < 0:1 rad. The trigonometric functions of the elasticrotations can then be represented as a Taylor expansion series.cos(�e) = 1� 12�2e +H:O:T:sin(�e) = �e +H:O:T: (2.42)With the use of some manipulation functions, the average of the total rotation� = �e + �r can be written as1L LZ0 cos �ds = 1L LZ0 [cos �r � �e sin �r � 12�2e cos �r]ds (2.43)1L LZ0 cos �ds = 1L LZ0 [sin �r + �e cos �r � 12�2e sin �r]ds (2.44)Substituting of equations (2.31) and integrating the result yields:1L LZ0 cos �ds = cos d1[1� 16d22 � 110d23] (2.45)1L LZ0 cos �ds = sind1[1� 16d22 � 110d23] (2.46)



2.3. FINITE ELEMENT DESCRIPTION 35These average rotation terms can be inserted in the strain energy equations,which can be integrated afterwards. Due to the simplicity of the formulations,this can be done by hand, or with the help of an external mathematical manip-ulation program such as MAPLE V2. The integrated strain energies are	 =EAL2 �1 + d4 � cos d1�1� 16d22 � 110d23��2 +EAL2 �(1 + d4) tan d1 � sind1�1� 16d22 � 110d23��2 +2EIL (d22 + 3d23) (2.47)
and 	T =EAL2 �1 + d4 � cos d1�1� 16d22 � 110d23��2 +EAL2 �(1 + d4) tan d1 � sind1�1� 16d22 � 110d23��2 +2EIL "cos2 d1(d22 + 3d23)(1� 16d22 � 110d23)2(1 + d4)2 # (2.48)
2.3.3 First and Second VariationThis expression can be used to obtain a relation between internal forces anddisplacements. Suppose that the strain energy of a structure is presented asa function of a single deformation u. It has been proven by Castigliano thatthe corresponding force F , needed for this deformation can be calculated bydi�erentiating the strain energy equation with respect to u.F = @	(u)@u (2.49)The sti�ness k of the structure with respect to this deformation is equal to thederivative of the force F with respect to uk = @F@u (2.50)The sti�ness can be deduced from the strain energy equation directly by com-bining equations (2.49) and (2.50), yieldingk = @2	@u@u (2.51)As a result of the �nite element discretization, the internal energy of the beamis expressed in terms of 4 variables, Antman's alternative parameters, whichare just a function of the 6 nodal displacements and rotations. It is thereforepossible to use Castigliano's theorems to determine the internal forces vectorand the sti�ness matrix.



36 2. A 2-DIMENSIONAL BEAMFor reasons of surveyability, the 6 nodal displacements and rotations uI ,wI and �I are replaced by the vector q = [q1; q2; : : : ; q6]t. According to Cas-tigliano's theorem, the internal forces vector can be calculated as follows.f int,ei = @	@qi (2.52)Since the energy is expressed in terms of the alternative Antman parametersdi, the chain rule must be used.f int,ei = @	@qi = @	@dj @dj@qi (2.53)Introducing a 4� 6 transformation matrix Â, which is de�ned asÂij = @di@qj (2.54)When the �rst variation of the strain energy in terms of the Antman parameters@	@di is written as f ai , the correct �rst variation vector is equal tof int,e = Âf a (2.55)The sti�ness matrix of the element (Ke) is the second variation of the strain en-ergy. It can be calculated by di�erentiating the expression for the �rst variationwith respect to qKe = @@qj �Âf a� (2.56)This can be written asKeij = @Â@qj f ai + Âij @f ai@qj (2.57)When the chain rule is applied, this equation can be written asKe = ÂtKaÂ+ f a1Â(1) + f a2Â(2) + f a3Â(3) + f a4Â(4) (2.58)Where Ka is the sti�ness matrix in terms of Antman's parametersKaij = @	@di@dj (2.59)and Â(k) a transformation matrix.Â(k)ij = @2f a@qi@qj (2.60)Since both Â(2) and Â(4) are equal to 0 the complete equation for the 6 � 6second variation matrix yieldsKe = ÂtKaÂ+ f a1Â(1) + f a3Â(3) (2.61)The di�erentiations and the construction of the transformation matrices arerather straightforward. They can be done by hand, or with help of the mathe-matics manipulation program MAPLE V2.



2.4. NUMERICAL ASPECTS 372.4 Numerical AspectsThe B2000 package is designed to analyze 3-dimensional structures. The imple-mentation of the 2-dimensional beam elements in this environment will causesome problems. In principle, it is possible to use these elements in ordinary 3-dimensional structures. With a correct choice of the transformation matrix thelocal coordinate system of the 2-dimensional element can be placed arbitrarilyin the 3-dimensional space. From a geometrical point of view, this solution iscorrect. However, the out-of-plane bending as well as the torsion of the beamare not de�ned. In these directions the beam su�ers from zero energy modes(modes of which the sti�ness of the beam is equal to zero). Locking of thesemodes is the only way to prevent the sti�ness matrix of the structure frombecoming singular.The B2000 package has already taken into account these kind of prob-lems. There is an option to choose the type of geometry. Apart from theordinary 3-dimensional coordinate system, a 2-dimensional (plane) and a quasi2-dimensional space can be chosen as well. Unfortunately, these 2-dimensionalspaces are not implemented yet. This implies that at the moment, the elementcannot be used properly, unless the 2-dimensional space is implemented �rst.Since these beam elements are just designed for scienti�c use, it is better tothink of a less radical solution.The best idea is to use the element in a restricted ordinary 3-dimensionalspace. The elements can only be placed in the xy plane. The z-coordinate isalways equal to zero. The displacements in the Z-direction as well as rotationsabout the x and y-axis need to be locked. In this case it is still possible touse the element in combination with 'normal' 3-dimensional elements, as longas these out-of-plane d.o.f.'s are locked for all nodes. A disadvantage of thissolution is that it is easy to make mistakes.From a programmers point of view, the internal forces vector and the sti�-ness matrix are considered as 3-dimensional objects. The out-of-plane d.o.f.rows and columns exist, but just contain zero values. This implies that thelength of the forces vector and sti�ness matrix is 12 elements long. The userwill not notice this.2.4.1 Transformation MatrixThe last step towards a workable �nite element is the transformation of variablesfrom the element local coordinate system into the global coordinate system3.T = � cos� sin�� sin� cos�� (2.62)where � is the angle between the element local and the global coordinate system.The terms cos� and sin� can be calculated directly as can be seen in �gure2.6. cos� = LxL ; sin� = LyL (2.63)3In B2000 conventions the global coordinate system is often referred to as the branch globalcoordinate system.
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Figure 2.6: Transformation from the element local to the global coordinatesystemIn every analysis within the B2000 package, the displacements are calculatedand stored in terms of the branch global coordinate system. In the calculationsof the element local internal forces and sti�ness matrices, these displacementsmust be transformed into element local displacements �rst, using the transfor-mation matrix [1].ue = TtuG (2.64)The transformation of the element local internal forces and sti�ness matricesmust be transformed to the branch global coordinate system using equivalentprocedures.f intG = f inte T KG = TtKeT (2.65)2.4.2 ImplementationAs described above, the beams are implemented in the B2000 platform as ordi-nary 3-dimensional elements. Since both beams are almost identical, they havethe same name, B2.EP. The model curvature description can be chosen usingthe ag NG. When NG is set to 1, the simpli�ed version of the element is used.When NG is set to 2, the Timoshenko variant is chosen. In the sequel this par-ticular variant will be denoted as B2.EP+. The users manual of the element canbe found in appendix A. An overview of the source code is given in appendixC.



3A 3-dimensional beam element
The 2-dimensional beam element developed in the previous section can be ex-panded to a 3-dimensional element by adding out-of-plane deformations. Thiswill lead to a number of new di�culties, most of them concerning the kinematicdescription of the large rotations. The addition of a completely new deformationmode, the torsion, will also be considered.Three dimensional beam elements in general are part of the so-called stan-dard structural elements, which are essential to any �nite element package.Other members are the shell elements and the volume elements. In principleany structure can be modeled with these elements. Apart from the typical beamlike structures (trusses and frames), beam elements can also be used to modelsti�eners and stringers on shells.The aim is to develop a 3-dimensional beam element that, together withRebel's shell elements [23] completes the family of nonlinear �nite rotation ele-ments in the B2000 package. Furthermore the beam must satisfy the demandsstated in chapter 2, i.e. a good behavior in the post buckling area. The devel-opment is therefore completely based on proceedings by Simo et al. [29, 30].3.1 Analytical DerivationThe mechanical properties of the beam are �rst derived analytically. The beamis considered as a one dimensional element in a 3-dimensional space. First auniform way to describe the deformed position of the beam is regarded. Usingthis kinematic description, the strains and curvature of the beam can be deter-mined. The constitutive relations translates the strains to stress. Finally, thederivation is completed with the formulation of the internal forces of the beam,using the linear and moment balance equations.3.1.1 Kinematic DescriptionThe kinematic description of the 3-dimensional beam is adapted from the de-scription in the previous section and extended with an additional `out-of-plane-
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Figure 3.1: Kinematic description of the 3-dimensional beamaxis'. Let ti(s; t)1 represent the three orthonormal basis vectors of a movingframe attached to a typical cross section, where s 2 [0; L] � R denotes thecurvilinear coordinate along the mid axis of the beam, and t 2 R+ is a timeparameter. The vector t3(s) remains normal to the cross section at all times (inthe derivation of the 2-dimensional element this vector was called t1). The �xedreference basis of the same section is denoted by Ei(s), so that at time t = 0the following must hold: ti(s; 0) = Ei(s), for s 2 [0; L]. Since the undeformedbeam is straight, the orientation of �xed basis Ei is constant along the beam'sarclength s and equal to the orientation of the element local coordinate system,ei. The orientation of the moving frame can be expressed in terms of the �xedframe using the orthogonal transformation tensor �(s; t) = �ij(s; t)Ei 
 Ejwhich is a function of both the position on the beam axis coordinate s and thetime t.ti(s; t) = �(s; t)Ei = �ij(s; t)Ei (3.1)The position of the centroid of the cross section (i.e., the origin of the movingframe) is denoted with the vector r 2 R which is de�ned in the terms of the�xed frame as follows:r(s; t) = ri(s; t)Ei (3.2)Note that the position of a point on the nodal axis is expressed in terms of the�xed reference frame (Ei). Accordingly, the set C3D of all possible con�gurationsof the beam is de�ned byC3D = f� = (r;�)jr : (0; L)! R3 ;� : (0; L)! SO(3)g (3.3)1In the sequel all latin subscripts can obtain the value i = 1; 2; 3. Furthermore, the Einsteinconvention holds, unless indicated otherwise.



3.1. ANALYTICAL DERIVATION 41Here, SO(3) is the special orthogonal (Lie) group. The transformation ten-sor � is a pure rotation tensor and de�ned in the SO(3) space of orthogonaltransformations. This implies that the identity � ��t = I must hold. In otherwords, in a matrix notation, the transposed matrix is equal to the inverse matrix(�t = ��1).In the continuing, all variables are expressed in one of these two referenceframes. In principle, the complete derivation is done according to the �xedframe, the so-called material description. However, some variables need tobe calculated in terms of the moving frame, the spatial description. Vectorsand matrices can always be transformed from one to another frame using theidentity (3.1).3.1.2 Strain and CurvatureThe strain is measured in the moving frame �rst. On the analogy of theEriksson-Pacoste beam, the 3-dimensional strain vector  is de�ned as follows: = drds � t3 (3.4)Where  = [1; 2; �]t. The �rst two terms denote shear strain in the t1 and t2direction , the last term is the normal or axial strain. The strain vector can betransformed to the material reference by using equation (3.1):� = ��1�drds � t3� (3.5)Using the orthogonality condition of �, this equation can be rewritten as� = �tdrds �E3 (3.6)Due to the multiplication of the spatial strain vector by the rotation tensor �the individual terms of the material strain tensor � consist of both shear andaxial strain terms.The curvature � in the 2-dimensional beam model was initially de�ned asthe derivative of the rotation � of the beam's cross section with respect to thearclength s, � = d�ds . This de�nition can also be used for the derivation of thecurvature in the 3-dimensional beam. In terms of the spatial base ti(s) and therotation �(s) the curvature can be written as
 = dti(s)ds = d�ds ei(s) = �d�(s)ds ��t(s) (3.7)The spatial curvature tensor 
(s) is a so-called skew symmetric tensor of thefollowing form
(s) = 24 0 �!3(s) !2(s)!3(s) 0 �!1(s)�!2(s) !1(s) 0 35 (3.8)
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Figure 3.2: Position vector x in an arbitrary body VIt can be seen that the identity 
 +
t = 0 must hold. Sometimes it is moreconvenient to use the associated axial vector of the tensor, denoted by the smallletter !. This vector is de�ned so that
a = ! � a (3.9)where a is an arbitrary vector. The axial vector consists of ! = [!1; !2; !3]t.The �rst two terms are the curvature of the beam around the t1 and the t2direction respectively. The third term !3 is the torsional curvature.The translation of the spatial curvature to the �xed frame requires the sameprocedure as used above.�(s) = �t(s)!(s) (3.10)Here, �(s) is the axial vector of the skew-symmetric tensor K(s).3.1.3 Balance EquationsThe element local equilibriums of forces and accelerations are described in themomentum balance equations, the balance of linear momentum and the bal-ance of rotational momentum (or moment of momentum). Both equationswill be derived stepwise in a general form �rst towards the explicit form fora 3-dimensional beam. The equations will be derived according to a spatialreference, i.e. the �xed frame. The linear momentum of an arbitrary body Bis de�ned asZZZV �(x; t) _x(x; t)dV (3.11)where _x(x; t) represents the velocity of an arbitrary particle with respect to a�xed point with position vector (x; t) and where �(x; t) is the material density.The rotational momentum of the body with respect to an arbitrary point x0(in this case the origin of the �xed frame is chosen), is de�ned asZZZV �(x; t)x� _x(x; t)dV (3.12)



3.1. ANALYTICAL DERIVATION 43Apart from the momentum, there are external forces that work on the body.They can be divided into body forces and contact forces, acting on the surfaceof the body (@V ). The applied body forces and moments can be described asa function of the body force density b(x; t):ZZZV �(x; t)b(x; t)dV (3.13)The rotational balance in this case yields:ZZZV �(x; t)x�b(x; t)dV (3.14)A well-known example of a body force is the gravity force. In that case, thevector �eld b can be assumed to be constant over the body V . When the grav-itational acceleration g acts in the negative z-direction (assuming a Cartesiancoordinate system), b can be described as b = [0; 0;�g]t. A contact force doesnot a�ect each point of the body: it only e�ects the boundary @V . The linearand rotational parts areZZ@V t(x;n; t)dA (3.15)and ZZ@V x�t(x;n; t)dA (3.16)The stress vector t is not only a function of place and time (x; t), it also dependson the direction of the surface of the body (n). The momentum equations to-gether with the applied forces and moments result in the balance of momentumequationsZZZV �(x; t)b(x; t)dV +ZZ@V t(x;n; t)dA == ddt ZZZV �(x; t) _x(x; t)dV (3.17)and ZZZV �(x; t)x�b(x; t)dV +ZZ@V x�t(x;n; t)dA == ddt ZZZV �(x; t)x� _x(x; t)dV (3.18)The Cauchy stress formulation will be used to describe the surface forces. Thestress vector t acts on the surface of the body in a point x 2 @V in the directionn. Cauchy proposed a new stress tensor which is independent of the normal n.t(x;n) = T(x)n (3.19)



44 3. A 3-DIMENSIONAL BEAM ELEMENTThe tensor T is called the Cauchy stress tensor. In a rectangular Cartesiancoordinate system, it can be decomposed as followsT = Tijeiej (3.20)and ti = Tij(x)nj (3.21)The �rst component (ei) de�nes the direction of the force, the second one(ej)) the direction of the normal. It can be shown by combining the linearand rotation momentum balances, that the Cauchy stress tensor is symmetric,T = Tt. Substituting the Cauchy stress tensor into equations (3.17) and (3.18)and using the divergence theorem, these equations can be written asZZZV �(x; t)b(x; t) + div[T(x; t)]dV = ddt ZZZV �(x; t) _x(x; t)dV (3.22)and ZZZV �(x; t)x�b(x; t) + div[(x�T(x; t)]dV = ddt ZZZV x� _x(x; t)dV(3.23)The beam element may be considered as a one dimensional element in a 3dimensional space. Beam properties can therefore be assumed to be constantover the beam cross-section. The divergencediv[T] = 264 @@eiTi1@@eiTi2@@eiTi3375 Summation over i = 1; 2; 3 (3.24)can be written as (note that e3 will be considered as the arclength variable s)t̂;s = @@s 24T31T32T3335 (3.25)For the same reasons, the integration space V can be replaced by Ads, whereA is the beam cross section. The balance equations can be written asZL �@n@s + �n� ds = ZL �(s; t)A�rds (3.26)ZL �@m@s + @r@s � n+ �m� ds = ZL [�I _w+w� (�Iw)] ds (3.27)where n andm are the internal forces and moments, the product of the internalstresses and the beam cross section. In the right hand sides of this equation is Ithe mass inertia tensor andw is a spin tensor, de�ned by Simo and VuQuoc [30].



3.1. ANALYTICAL DERIVATION 45In this chapter, a closer look is taken at the internal forces of the beam.The external (body) forces are of less importance. The dynamic (inertial) partof these equations (the right-hand-sides) are omitted for the time being. Thesame is done to the body forces that describe pre-stress, thermal expansionetc. In later developments these terms can be evaluated and added to the �niteelement de�nition of the beam.@n@s = 0 (3.28)@m@s + @r@s � n = 0 (3.29)3.1.4 Constitutive EquationsThe relation between strains and stresses are embedded in the constitutive equa-tions, or the so-called stress strain equations. The beam considered so far isisotropic and fully elastic. As a result of this, there are no coupling e�ects.For example, a pure shear deformation has a pure shear force as a result. Theconstitutive relations are regarded in the moving frame �rst. They can bepresented in the form of a matrix equation.�NM� = �C���� (3.30)where �C is the 6 � 6 constitutive matrix and N and M are the forces andmoments in material notation. Since there is no coupling, the matrix �C is adiagonal matrix. The distribution of stresses caused by axial strain, bendingand torsion are linear over the beam cross section. The stresses as a result of theshear strain are distributed nonlinearly over the cross section. The distributiondepends on the shape of the cross section as well.Up to now, the complete derivation can be used for beams with an arbitrarycross section. However, in order to describe the constitutive relations of sheardeformation, the shape of the cross section determines the stress distribution. Inthis case, it is convenient to consider the most simple and common cross section,a rectangular cross section. A method to determine the exact shear strainrelation for this shape can be found in Bathe, [1]. In this book, the constitutiverelation is presented as the ordinary linear relation GA (shear modulus andarea) with a correction factor k.The shear strain energy 	shear per unit length of the beam is de�ned asfollows.	shear = ZA 12G�2adA = ZAs 12G � VAs� dAs (3.31)where �a is the actual shear stress, V the total shearing force and As the relativeshear cross section area. Using k = A=As, the equation can be written ask = V 2A RA �2adA (3.32)



46 3. A 3-DIMENSIONAL BEAM ELEMENTFor a rectangular cross section, the shear stress can be written as�a = 3V2A �(h=2)2 � y2(h=2)2 � (3.33)giving the correction factor k = 5=6. Using the correction factor, the completeconstitutive relations for the rectangular beam in material description become�C = diag �56GA; 56GA;EA;EIxx; EIyy; GJ� (3.34)This material form of the constitutive matrix can be transformed to a spatialbase, according to�c = ��C�t (3.35)where � is a 6� 6 transformation matrix assembled using the `ordinary' trans-formation matrix �.� = �� 00 �� (3.36)The same transformation can be executed for the forces and moments�nm� = � �NM� (3.37)where n and m are the forces and moments in spatial description, which canbe substituted in the balance equations, (3.28) and (3.29).3.2 Finite rotationsIn a 3-dimensional con�guration, the rotation space is a nonlinear manifold: therotation of a vector is a nonlinear operation and as a result of this subsequentrotations cannot be added in a normal fashion. One of the manifestations ofthese nonlinearities is shown in �gure (3.3). The �nal orientation of the box isdetermined by the order in which the three consecutive rotations are executed.In many applications, for example older �nite element descriptions, therotations are assumed to remain small (< 0:1 rad:). As a result of this the three-dimensional rotations can then be expressed with a linear rotation tensor andthe current reference from (the coordinate system) need not be updated. Thebeam element that will be derived in this chapter must be able to handle largedeformations. The linear rotation tensor cannot be used then. Furthermore thereference frame must updated constantly.In this section the rotation tensor for large rotations will be outlined ac-cording to the conventional description for small rotations. A special attentionis paid to the Rodrigues rotation vector [3], which will be used in this speci�ccase.
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Figure 3.3: The non-communitativity of 3-dimensional vector rotations
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Figure 3.4: Small rotation in a 2-dimensional space3.2.1 Small RotationsConsider an arbitrary vector r0 in the 2-dimensional space as shown in �gure(3.4) is rotated by an angle �� to become r1. The new vector r1 can be writtenas r1 = jjr0jj24cos(� +��)sin(� +��)0 35 (3.38)where jjr0jj is the length of the vector r0. Since the rotations remain small, thisequation can be simpli�ed to:r1 = r0 +�r = jjr0jj(t+��n) (3.39)where t is a unit vector tangent to r0, n is a unit normal vector. In thissituation, n can be written in the following formn = 24� sin �cos �0 35 (3.40)



48 3. A 3-DIMENSIONAL BEAM ELEMENTNote that the relation n � t is satis�ed. In a tensor notation, equation (3.38)can be written asr1 = 24 1 ��� 0�� 1 00 0 135 r0 (3.41)This equation can be rewritten with a rotation tensor �lin.r1 = �r0; �lin. = I+�2D (3.42)where I is the unit tensor, I = diag[1; 1; 1], and � is the skew-symmetric spin-tensor;�2D = 24 0 ��� 0�� 0 00 0 035 (3.43)It need no proof that when this equation is extended for an arbitrary rotationin a 3-dimensional space, this equation can be written as:r1 = r0 +�r = r0 + (�� � r0) (3.44)where �� is the 3-dimensional rotation tensor. The spin-tensor � = �� canbe written in tensor notation.� = 24 0 ���3 ��2��3 0 ���1���2 ��1 0 35 (3.45)Because of the simpli�cations made in this derivation, this linear rotation vectorcannot be used for large rotations. The equivalent of equation (3.44) will bederived using Rodrigues formulation for large rotations.3.2.2 Large RotationsAssume that the rotation of an arbitrary vector r0 to a new situation r1 in-volves the vector � = [�1; �2; �3]t. This rotation is still an incremental rotation.For reasons of convenience the � term has been omitted. This vector can bedecomposed into a unit vector e.� = jj�jje (3.46)where � is the length of the pseudo vector. Assume that the vector r0 is rotatedaround vector e over an angle jj�jj to the new direction r1, �gure (3.5a). Afterexamining the rotation disc as shown in �gure (3.5b) the following identity canbe seen:�r = �a+�b (3.47)where �b is orthogonal to �a. The length of vector �b (jj�bjj) can also bederived form the �gure;jj�bjj = R sin jj�jj (3.48)
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Figure 3.5: Three dimensional rotation (a) Detail (b)The same can be done for �ajj�ajj = R(1� cos jj�jj) (3.49)Vector �b is perpendicular to both r0 and e. Its direction can be calculatedby the expressionb� = e� r0 (3.50)Note that the length of b� is not equal to the length of b. Dividing equation(3.50) by its own length jjb�jj and multiplying this with equation (3.48) gives�b = jj�bjjjjr0 � ejj (e� r0) = R sin jj�jjjjr0 � ejj (e� r0) (3.51)Using the following relationjje� r0jj = jjr0jj jjejj sin� (3.52)Since jjejj = 1 this can be written asjje� r0jj = jjr0jj sin� = R (3.53)Substituting this into equation (3.51) gives�b = sin jj�jj(r0 � e) = sin jj�jjjj�jj (� � r0) (3.54)Next, �a can be determined since this vector is orthogonal to both �b and e.�a� = sin jj�jj(e� (e� r0)) (3.55)



50 3. A 3-DIMENSIONAL BEAM ELEMENTIn a similar way as to �b, vector �a can be determined using equation (3.49)�a = (1� cos jj�jj)jj�jj2 (� � (� � r0)) (3.56)The equations for �a and �b can now be substituted into equation (3.47).rn = r0 +�r = r0 + sin jj�jjjj�jj (� � r0) + 1� cos jj�jjjj�jj2 (� � (� � r0)) (3.57)The de�nition of the spin-tensor� � r0 = �r0 (3.58)holds so that the equation above can be written in a more general form.rn = �r0 (3.59)where � is the yet de�ned rotation tensor.� = I+ sin jj�jjjj�jj �+ (1� cos jj�jj)jj�jj2 �� (3.60)It is obvious that this expression is equal to the formula for the rotation tensorin for small rotations (3.42) with an additional nonlinear term.3.2.3 Rodrigues FormulaFor a number of reasons, the formula for �nite rotations in a 3-dimensional spaceis often expressed in an alternative way. In this case an alternative expressionbased on Rodrigues' treatment is used. The incremental rotation � can bereplaced by a so-called pseudo vector�� = tan 12 jj�jjjj�jj � (3.61)Since the incremental rotation � can be decomposed in a direction vector e andits length, � = jj�jje, the pseudo-vector can be written as�� = tan 12 jj�jje (3.62)After some manipulations, the rotation tensor � can be written as� = I+ 21 + jj��jj ���+ ��2� (3.63)Note that all trigonometric terms have disappeared in this expression.



3.2. FINITE ROTATIONS 513.2.4 The Exponential FormIn equation (3.60) the rotation tensor is not just a function of the spin-tensor�, but also of the expressions sin � and 1� cos �. Using a Taylor expansion forthese sine and cosine terms, it is possible to exclude them.sin jj�jj = jj�jj � jj�jj33! + jj�jj55! � : : : (3.64a)cos jj�jj = 1� jj�jj22! + jj�jj44! � : : : (3.64b)Using the relationship�2n�1 = (�1)n�1jj�jj2(n�1)� (3.65a)�2n = (�1)n�1jj�jj2(n�1)�2 (3.65b)the exponential form looks like� = exp[�] = I+�+ �22! + �33! + : : : (3.66)The rotation tensor formulated in equation (3.63) can also be written in thisform � = exp[�] = I+ 21 + jj��jj ���+ ��2� : (3.67)This exponential notation can be very useful in the linearization process whichwill be tackled in section 3.3.2. However, it should be mentioned that thisexponential formulation is just a symbolic notation. The rotation tensor cannotbe calculated by using this notation, for the simple reason that the exponentof a tensor is not de�ned.3.2.5 Compound RotationsAn already deformed beam element must be able to be deformed with a new,incremental rotation. Since the rotation is described in a nonlinear space, thesecompound rotations cannot be added in a traditional manner. The new incre-mental rotations must be applied to the current rotation tensor. In this sectiona formulation for compound rotations will be derivated. Consider a speci�cinitial rotation �0r1 = �(�1)r0 (3.68)This rotation is followed by an incremental rotation � = [�1; �2; �3]t that rotatesthe vector r1 into a new state (r2) followingr2 = �(�2)r1 (3.69)Substituting equation (3.68) gives the following relationship between the newvector r2 and the reference vector r0.r2 = �(�2)�(�1)r0 (3.70)



52 3. A 3-DIMENSIONAL BEAM ELEMENTThe operator in the equation above can be replaced by a new operator �12.Summarizing, the rotation of a vector r0 to r2 via the intermediate result rinvolves two rotation tensors. In all cases the rotation pseudo-vectors �1 and�2 must be translated into a rotation tensor �1 = exp[�1] and �2 = exp[�2]respectively.In the next chapter, the development of the transient processor, the conceptof compound rotations is also used. In that case however a slightly di�erentvariant of the Rodrigues notation is used to describe the rotations. Doing so,the compound rotation vector can be fully derived as a function of the tworotation vectors, see section (4.6.3).3.3 Internal Forces and Sti�nessThe balance equations as derived in section 3.1.3 are used to determine theinternal forces vector of the beam2. The sti�ness of the beam can be found bytaking the �rst derivative of the internal forces with respect to the displace-ments and rotations. In this case, since the expression of the internal forces ishighly nonlinear, it will be done by linearization of the weak form of the bal-ance equations. Before the balance equation can be linearized, an admissiblevariation must be superposed to the current deformed state.3.3.1 Admissible VariationsA deformed con�guration of the beam is speci�ed by the position of the midaxis and the orientation of the moving frame, i.e.�(s) = (r(s);�(s)) 2 C3D: (3.71)Suppose that the con�guration is perturbed relative to this con�guration �(s)by a set �(s) consisting of a superposed in�nitesimal displacement u(s) and ain�nitesimal rotation �(s).�(s) = (u(s);�(s)) (3.72)The new, perturbed con�guration is denoted by �"(s) and is still an element ofthe set C3D of all possible con�gurations, equation (3.3).�"(s) = (r"(s);�"(s)) 2 C3D (3.73)Note that the additional incremental rotation �(s) is a compound rotation.Using equation (3.70) the new position and rotation of the mid axis can beexpressed asr"(s) = r(s) + "u(s); �"(s) = exp["�(s)]�(s): (3.74)2In the derivation of the 2-dimensional beam, the internal forces are determined by deriva-tion of the internal energy equation of the beam. The alternative name `�rst variation of thebeam' is used instead. The balance equation can be considered as the �rst variation of theenergy equation as well.



3.3. INTERNAL FORCES AND STIFFNESS 533.3.2 LinearizationThe linearization will be done stepwise. First, the con�guration variables arelinearized. After this the strain and curvature expressions will be tackled. Theresults can be used to linearize the weak form of balance equations. A directionalderivative or so-called Frechet derivative is used to do so.Con�guration VariablesThe set of con�guration variables �(s) = (r(s);�(s)) is linearized �rst. Theperturbed con�guration can be written as�"(s) = r(s) + "u (3.75)Di�erentiation of this expression with respect to " and setting " = 0, the direc-tional derivative of the vector r is determined.Dr � u = �d(r+ "u)d" �"=0 = u(s) (3.76)which is not surprising since the position vector is a linear manifold. The(nonlinear) rotation of the con�guration � is more complicated. Using theexponential form of the incremental rotation tensor exp[�]D��� = �d(exp "��)d" �"=0 = �� exp["�]��"=0 = �� (3.77)The linearization of the transposed rotation tensor �t can be found using anidentical derivationD�t ��t = ���t (3.78)Strain and CurvatureFirst the spatial description of the strain vector will be tackled. The strain ofthe perturbed situation is equal to�" = �t"�dr"ds �E3� (3.79)Using the linearized con�guration variables, the linearized strain is equal toD�u = ��"]"=0 = �t[duds ��drds� (3.80)The linearized form of the spatial curvature tensor can be calculated in anidentical fashion. Using equation (3.7), the curvature in the perturbed situationis equal to
" = d�"ds d�" = �d exp["�]�ds � exp[�"�]�t (3.81)



54 3. A 3-DIMENSIONAL BEAM ELEMENTAfter derivation of the �rst term, this can be written as
" = �d exp["�]ds �+ exp["�]d�ds � exp[�"�]�t (3.82)Using the identity ��t = I:
" = �d exp["�]ds � exp["�] + exp["�]
 exp[�"�] (3.83)This equation can be linearized completely except for the �rst term. It is shownby Simo and VuQuoc [30] that this term can be replaced by�d exp["�]ds � exp["�] = 21 + jj��jj2 ���0 + ��0 ��� ����0� (3.84)When � is replaced by "�, the alternative spin tensor �� must be replaced by12"��. The tensor ��0 is the skew-symmetric tensor of the axial vector ��0. Thisvector can be calculated by di�erentiating equation (3.61).��0 = "tan 12 jj�jjjj�jj #0 � + tan 12 jj�jjjj�jj �0 (3.85)Note that the derivative of jj�jj0 = e � �0,��0 = "(1 + tan2 12 jj�jj)(e � �0)� tan 12 jj�jjjj�jj (e � �0)# e+ tan 12 jj�jjjj�jj �0 (3.86)Manipulation of the quadratic tangent term gives��0 = " 1cos2 12 jj�jj � 2 tan 12 jj�jjjj�jj # (e � �0)e+ tan 12 jj�jjjj�jj �0 (3.87)which can �nally be rewritten as��0 = 12 tan 12 jj�jj12 jj�jj ��0 ��1� jj�jjsin jj�jj� (e � �0)e� (3.88)Substituting equations (3.88) and (3.84) into (3.82) and taking the derivativewith respect to ", it follows that the linearized expression for the curvature isequal toD
� = [
"]"=0 = � (3.89)3.3.3 Weak Form of Balance EquationsThe balance equations (3.28) and (3.29) must hold for all possible deformations� = (r;�). Any admissible variation with respect to this deformation must alsohold, with the exception that they disappear on the boundary of the beam, i.e.at s = 0 and s = L.



3.3. INTERNAL FORCES AND STIFFNESS 55The balance equations are multiplied by the admissible variations �(s) =(u(s);�(s)), yieldingG(�;�) = ZL �dnds � u+�dmds + drds � n� � �� ds = 0 (3.90)Since the variation �(s) vanishes at the boundary, integration by parts of thisequation leads to the spatial version of the weak form of the balance equations.G(�;�) = ZL �n � �duds � � � drds�+m � d�ds � ds = 0 (3.91)The sti�ness of the beam, previously referred to as the second variation can beobtained by linearization of the weak form of balance equations. This processis completely adapted from Simo and Vu-Quoc [30].3.3.4 Linearization of the Weak FormThe sti�ness of the structure, previously referred to as the second variationof the internal energy, can be calculated from the internal forces vector bydi�erentiating this term with respect to the displacement and rotations. In thiscase, with the nonlinear description of rotations, it is done by linearizing theweak form of the balance equations. This procedure is equal to the linearizationof the con�guration variables and the strain and curvature measures. Thecomplete derivation can be found in a paper by Simo and VuQuoc [30].The linearization of the weak form of the balance equations can be presentedin a Taylor series expansion notation.L[G(�;�)] = G(�;�) + D[G(�;�)]�� (3.92)The last term D[G(�;�)]�� is the Frechet derivative, which is equal to thesti�ness of the beam. It consists of two parts. The �rst part contains thelinearization of the internal forces vector [n;m]t. Recall the spatial version ofthe equation that describe the internal forces,�nm� = �� 00 �� �C ���� (3.93)Linearization of this equation and substituting the result in the weak form ofbalance equation, givesD[G(�;�)]1�� = ZL �� ĉ �t� ds (3.94)where � is a di�erential matrix, which can be written as� = � ddsI 0�r0�I ddsI� (3.95)



56 3. A 3-DIMENSIONAL BEAM ELEMENTSince the deformations are prescribed in a nonlinear manifold, the second partof the vector contains the linearization of the geometry variables. This part,often called the geometric sti�ness matrix, can be written asD[G(�;�)]2�� = ZL �	tB	� ds (3.96)where 	 is a second di�erential operator de�ned as	 = � ddsI 0 00 ddsI I� (3.97)and B the so-called geometric sti�ness matrixB = 24 0 0 [�n� I]0 0 [�m� I][�n� I] 0 n
 r0 � (n � r0)I35 (3.98)where (n
 r0)ij = niri. This part of the tangent matrix is zero when the beamis undeformed.It is shown by Simo and VuQuoc [30] that it is non-symmetric when the con-�guration �(s) = (r;�) is not in an proper equilibrium. Methods to overcomethese symmetry problems are discussed in the next section.3.4 Numerical implementationThe analytical derivation in the previous sections can be used to de�ne a �niteelement description. Just as in the development of the 2-dimensional beams,two components are required to obtain a workable nonlinear 3-dimensional �niteelement, i.e. a �rst variation vector (i.e. the internal forces vector) and a secondvariation matrix (the sti�ness matrix).The analytical description holds for arbitrary beam structures. It is there-fore just a small step to apply it to a beam of �nite length L. This can be eithera two node or a three node element, often referred to as linear and quadraticelements respectively. Higher order elements can be deduced using the sametechniques but are not very common. The discretization is �rst executed for anarbitrary �nite element beam model with nel nodes. The speci�c implementa-tion of the 2 node beam will be considered afterwards.3.4.1 DiscretizationA typical element is set up using nel nodes and has the initial length L. Thenodal incremental displacements uI and rotations �I are interpolated in termsof shape functions (interpolation functions).u(s) = nelXI=1NI(s)uI ; �(s) = nelXI=1NI(s)�I (3.99)Here, nel represent the total number of nodes of the beam element, NI(s) theshape function associated with node I, and uI ;�I are the nodal incrementaldisplacement and rotation of the element in node I.



3.4. NUMERICAL IMPLEMENTATION 57Internal Forces VectorThe element contribution to the internal forces vector is obtained from thediscrete approximation to the weak form of the balance equations. Proceedingin an element fashion, by introducing the interpolation functions, the discreteapproximation to G(�;�) may be written asG(�;�) = EXe=1Ge(�;�) (3.100)where E is the total number of elements. The element notation of the weakform of balance equation, Ge(�;�) can be rewritten as.Ge(�;�) = �ef inte (�) = nnXI=1 � � f inteI (�) (3.101)Here, f inteI (�) denotes the residual force vector in the Ith node of a typical ele-ment. It can be computed using the discrete approximations of the di�erentialoperator �. Let �I represent the discrete di�erential operator associated withnode I.�I = � N 0II 0�NI [r0�I] N 0II� (3.102)In this expression, N 0I denotes the derivative of NI(s) with respect to s, I =Diag[1; 1; 1] is the unit matrix, and [r0�I] is a skew-symmetric matrix whoseaxial vector is r0.The spatial stress vector [ne;me] is computed from the constitutive equa-tions (3.30). The unbalanced nodal force f inteI for a single beam element, relatedto node I can be written asf inteI = ZL �I �neme� ds (3.103)It can easily be seen that this integral equation is a system of 6 independentequations. One for each degree of freedom.The Tangent Sti�ness MatrixIn the previous section, it is shown that the sti�ness matrix consists of twoparts, an `ordinary' part due to the linearization of the internal forces andmoments and a geometric part due to the linearization of the rotation tensor�. The same interpolation functions can be applied to these equations, yieldingD[G(�;�)]�� = D[G(�;�)]1�� +D[G(�;�)]2�� = SeIJ +KeIJ (3.104)where the sti�ness matrix SeIJ is equal toSeIJ = ZL �Ice�tJds (3.105)



58 3. A 3-DIMENSIONAL BEAM ELEMENTand the geometric sti�ness matrix TeIJ is equal toTeIJ = ZL 	IBe	tJds (3.106)where 	I is the discrete expression of the second di�erentiation tensor 	.	I = �N 0II 0 00 N 0II NII� (3.107)The total element sti�ness matrix KeIJ is the sum of the ordinary elementsti�ness matrix and the element geometric sti�ness matrix.KeIJ = SeIJ +TeIJ (3.108)This matrix is non-symmetrical when the deformation is not an equilibriumstate. Since B2000 requires symmetrical matrices, the sti�ness must be dividedinto a symmetric and a skew-symmetric part.KSYMeIJ = 12(KeIJ +KteIJ); KSKEWeIJ = 12(KeIJ �KteIJ) (3.109)The symmetric part is used as the temporary sti�ness matrix, the skew-symmetricpart is used for convergence checking: when all terms of this matrix are (almost)equal to zero, a equilibrium state (at least in terms of the beam geometry) hasbeen found.For the time being, just a 2 node beam element will be programmed. Thismeans that both I and J can obtain the values 1 and 2. Hence, the inter-nal forces vectors f inteI is a vector with 12 elements; KeIJ is a 12 � 12 matrix.Quadratic (3 node) and higher order elements can be derived using the sameprocedures. In the next section, the interpolation functions of a two node beamelement will be discussed.3.4.2 Interpolation FunctionsSince the beam itself is a one dimensional object (the only position parameter onthe beam is the arclength parameter s) all variables are a function of s. However,in the �nite element description, just the displacement and rotations in thenodes are known. Interpolation functions (or shape functions) are required toachieve the relationship between these nodal displacements and rotations andthe displacements and rotations on the beam.Standard shape functions have to ful�ll just two rules. First of all the`normalized' function should have the value 1 in the speci�c node and the value0 in all the other nodes and second, the sum of all the shape functions musthave the value 1 in the complete integration domain, in this case s 2 [0; L].In order to be able to integrate the equations numerically, the domain isoften transformed and normalized. Consider a new arc length variable, � withthe domain � = [�1; 1]. The transformation equation is equal to� = 2� sL � 12� (3.110)
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0.51.0node 2node 1

1.00.5 node 10 1 � �1node 2�1 �1 0Figure 3.6: Interpolation functions for the 2 node beam elementThe Jacobian of this transformation which will be needed in the integrationprocess is de�ned as followsJ = dsd� = 12L (3.111)An arbitrary function set up by two points is called a linear function by de�-nition. A 2 node beam element is therefore called a linear element. The termlinear does not imply that the description of internal forces and sti�ness islinear. Just the interpolation functions are linear. The 2 linear interpolationfunctions for the domain [�1; 1] are shown in �gure 3.6. In an equation form,the functions for node 1; N1 and node 2; N2 can be written asN1 = 12(1� �); N2 = 12(1 + �) (3.112)So the discrete equation for the displacements ux readsux = 12 (1� �)ux1 + 12 (1 + �) ux2 (3.113)where ux1 denotes the discrete displacement in the x-direction of the �rst node.The di�erentiation of this expression with respect to s reads;uxds = uxd� d�s = (�12ux1 + 12ux2)J�1 = �1L ux1 + 1Lux2 (3.114)So, the di�erentiated interpolation functions areN 01 = � 1L ; N 02 = 1L (3.115)Eventually the interpolation of a three node beam can be obtained by followingthe same principles. The three functions (node 1, 2 and 3) should have thevalue 1 in the corresponding node and 0 in the other 2 nodes. The only way toachieve this is by using quadratic interpolation functions. A three node elementis therefore often referred to as a quadratic element.



60 3. A 3-DIMENSIONAL BEAM ELEMENTn Sample point �i Weight ri1 0.00000 00000 00000 2.00000 00000 000002 -0.57735 02691 89626 1.00000 00000 000000.57735 02691 89626 1.00000 00000 000003 -0.77459 66692 41483 0.55555 55555 555550.00000 00000 00000 0.88888 88888 888880.77459 66692 41483 0.55555 55555 555554 -0.86113 63115 94053 0.34785 48451 37454-0.33998 10435 84856 0.65214 51548 625460.33998 10435 84856 0.65214 51548 625460.86113 63115 94053 0.34785 48451 37454Table 3.1: Sampling points and weight factors for Gauss quadrature integrationfor a one dimensional interval � = [�1; 1]3.4.3 Numerical IntegrationThe equations for internal forces and sti�ness are written in an integral formwhich have to be integrated over the interval s 2 [0; L]. This can be done byhand, a laborious job which will result in enormous equations. A more distin-guished manner is to integrate the equations numerically. A number of di�erenttechniques can be used to do so. These techniques are more or less based onthe same idea. The function is evaluated at a number (k) of speci�c points, theso-called sampling points. The values of the function in these sampling pointsare used to set up a polynomial, by using weight factors. The primitive of thisith order polynomial is known so that the polynomial can be integrated.One of the most simple integration methods is the Newton-Côtes integrationmethod. The integration domain is assumed to be divided into n intervals, thesampling points are spaced at equal distances. The Newton-Côtes procedurefor 1 interval is also known as the trapezoidal integration rule, the procedurefor 2 intervals as the Simpson formula. The performances of both methods arerather poor. Good results are obtained when the domain is divided into moreintervals (> 4).The previous integration schemes considered so far use equally spaced sam-pling points. The Gauss Quadrature integration method uses optimized sam-pling positions. The basic assumption of this method is that both the weightfactors �1; : : : ; �n and the sampling points r1; : : : ; rn are variables. In lit-erature [1], the weight factors and sampling points are presented for a onedimensional domain [�1; 1]3. They can be found in table 3.1.The Gauss integration method is applied to the equations governing theinternal forces and the sti�ness of the beam. Every component of this 12 � 1vector and 12 � 12 matrix respectively must be integrated apart. The integral3This is the one and only reason that the domain of the integrals in the previous sectionis transformed from [0; L] to [�1; 1].



3.4. NUMERICAL IMPLEMENTATION 61equation of such a component can be written in the following arbitrary form.F = LZ0 f(s)ds (3.116)First this equation is transformed to the new arc length variable �, accordingto F = LZ0 f(�)Jd� (3.117)where J is the Jacobian of the transformation, derived in equation (3.111). Inthis case, since the interpolation functions vary linearly with respect to �, thisfunction can be integrated using the 2-point Gauss integrating technique. Thefull equation can than be written asF = �1f(r1)J + �2f(r2)J (3.118)The weight factors and sampling points in this case are respectively (table 3.1)r1 = �0:57735 02691 89626; �1 = 1:0r2 = 0:57735 02691 89626; �1 = 1:0 (3.119)Higher order integration methods will not result in signi�cant more accurateresults.3.4.4 Updating the Con�gurationThe rotations of the nodes cannot be used directly in this �nite element for-mulation: the update rotation tensor � as well as the curvature � must becalculated regarding the previous con�guration.Assume that the previous con�guration in the point n�1 is known, i.e. �n�1containing the position of the mid axis r and the rotation of the frame �n�1.The curvature tensor of the previous step, i.e. 
n�1(s), is known too. The newcon�guration �n can be considered as a variation of the old con�guration rn�1where u and � are the variables. This means that the following must holdrn = rn�1 + u; �n = exp[�]�n�1 (3.120)In this perspective, the most attention is paid to the calculation of the expo-nential form of the rotation tensor. This has been done for arbitrary varia-tions in section 3.3.1, but will be repeated here for the incremental rotation �.� The �rst aim is to determine the Rodrigues type rotation vector �� and itsderivative. The normalized rotation vector e is needed for these calcula-tions.e = �jj�jj (3.121)



62 3. A 3-DIMENSIONAL BEAM ELEMENT��(s) = tan 12 jj�jje (3.122)��0(s) = 12 tan 12 jj�jj12 jj�jj ��0 ��1� jj�jjsin jj�jj� (e � �0)e� (3.123)� The rotation tensor as well as its derivative can be calculated using theRodrigues rotation termsexp[�] = I+ 21 + jj��jj ���+ ��2� (3.124)�d exp[�]dS � exp[��] = 21 + jj��jj ���+ ��0 ��+ ����0� (3.125)� The rotation tensor can be used to determine the new position of themoving frame �n+1�n+1 = exp[�]�n (3.126)� The curvature in terms of the moving frame
n+1 = �d exp[�]dS � exp[��] + exp[�]
n exp[��] (3.127)� Finally the curvature and strain can be transformed to the �xed frameusing the rotation tensor ��n+1 = �tn!n (3.128)�n+1 = �tn�00(n) �E3 (3.129)3.4.5 Transformation MatrixThe beam element is de�ned in a local coordinate system Ei. The variables canbe transformed into branch global coordinates gi in a similar way as describedin section 2.4.1. Nevertheless, the construction of the transformation matrix Tis somewhat more complicated compared to the 2-dimensional beam element,since an additional director nx is involved to de�ne the exact position of theelement in the branch global space.The position of the element is determined using 3 nodes, see �gure 3.74.Node 1 can be considered as the beam's origin, node 2 determines the endpointof the local E3 vector and is on the other end-point of the beam. The auxiliary4This method is also used positioning the linear beam element which is already implementedin B2000 [16].
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Figure 3.7: Orientation of the 3-dimensional beam elementthird node is used to setup the element local E13-plane. The vector d need notto be perpendicular to E3. The director in the local E2 direction, n2, is normalto the E13-plane and can be calculated by taking the vector product of the 2vectors (E3 and d) that are used to set up this plane.E2 = E3 � d (3.130)E1 can be determined in a similar way,E1 = E2 �E3 (3.131)The transformation matrix is formulated asT = 24cos(E1;g1) cos(E1;g2) cos(E1;g3)cos(E2;g1) cos(E2;g2) cos(E2;g3)cos(E3;g1) cos(E3;g2) cos(E3;g3)35 (3.132)where cos(Ei;gj) is the cosine of the angle between vector Ei and gj . Thisexpression can be written ascos(Ei;gj) = Ei � gjjjEijj jjgj jj (3.133)When the vectors Ei are normalized and gj are unit Cartesian base vectors,E1 = [1; 0; 0]t , this equation will reduce tocos(Ei;gj) = E(j)i (3.134)where E(j)i is the jth component (j = 1; 2; 3) of the vector Ei. The transforma-tion matrix will beT = 264E(1)1 E(2)1 E(3)1E(1)2 E(2)2 E(3)2E(1)3 E(2)3 E(3)3 375 (3.135)
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Figure 3.8: Beam deformation including shear e�ect3.5 Locking PhenomenaIn the previous chapter, the membrane locking phenomenon was already de-tected on the curved 2-dimensional beam elements. Since the Bernoulli hy-pothesis is not used in this 3-dimensional beam element, there is an additionallocking mode, namely shear locking. In this section, the shear locking willbe examined more closer and both the shear-locking as well as the membranelocking e�ects will be tackled on the 3-dimensional element.3.5.1 Shear LockingIn order to get a better idea of shear deformation of a beam in general, the sheardeformation of a plane beam element with shear e�ects will be considered. Itcan be assumed that the results also holds for fully 3-dimensional beams.In �gure 3.8, a beam under shear is presented. The general shear deforma-tion of the beam  can be written as = dwds � � (3.136)For the 2 node beam element a set of linear interpolation functions have beenused to establish a relationship between node displacements and continuousdisplacements. In this case the displacement w and the rotation � can bewritten asw(�) = N1(�)w1 +N2(�)w2 �(�) = N1(�)�1 +N2(�)�2 (3.137)Substituting these interpolation functions into equation (3.136), gives(�) = N 01(�)uy1 +N 02(�)uy2 �N1(�)�z1 �N2(�)�z2 (3.138)And after substituting the linear interpolation functions, this equation can bewritten as(�) = � 1Luy1 + 1Luy2 � 12(1� �)�z1 � 12(1 + �)�z2 (3.139)
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ux2�z2uy2

LFigure 3.9: Pure bending of a clamped beamor  = 1L(uy2 � uy1)� 12(�z1 + �z2) + �2(�z1 � �z2) (3.140)The beam must be able to capture a pure bending state, also known as Kirch-ho�'s mode. One of the characteristics of a pure bending state is that the shearstrain (or the shear stress) is equal to zero,(�) = 0 8 � 2 [�1; 1] (3.141)This equation can only be satis�ed for all values of � when all terms in equation(3.140) are equal to 0. This also means that �z1 = �z2 = 0. Hence, a zero shearstrain can only be reached when there is no deformation at all.A number of remedies is known to overcome this problem. Just on of themwill be considered in this case, the method of reduced integration. Other reme-dies can be found in a paper by Ibrahimbegovi�c [12].3.5.2 Reduced IntegrationThe reduced integration or selective integration method is the best known andthe most e�ective remedy for locking problems. The idea is simple. Equation(3.140) can be satis�ed in one point, which is � = 0. The equation reduces to = 1L(uy2 � uy1)� 12(�z1 + �z2) (3.142)This equation can be satis�ed using nonzero �z1 and �z2. Consider the case of aclamped beam, i.e. uy1 = �z1 = 0, as shown in �gure 3.9 A pure bending stateis satis�ed when,uy2 = 12�z2L (3.143)since there is no locking when the shear strain is evaluated in the mid point ofthe beam. In this point, the shear strain is equal to the average shear strainand can therefor be used for the complete beam. When the shear terms of thebeam are integrated using a one-point (reduced) integration method, the shearis just evaluated at � = 0.



66 3. A 3-DIMENSIONAL BEAM ELEMENT3.5.3 Membrane LockingJust as the 2-dimensional beam element, this element su�ers from membranelocking. The methods to overcome this problem are rather simple. As can beseen in section 2.3.2, the function for membrane strain in the 2-dimensionalbeam is� = 1L(u2 � u1) + a2L(�1 + �2) + s a2L(�2 � �1) (2.37)Just as in the previous case, this problem can be overcome by applying thereduced integration technique on the membrane strain.3.5.4 ImplementationThe �rst and second variation matrices are expressed in the �xed frame. As aconsequence of the transformation by the rotation matrix � , the membraneand shear strain terms cannot be seen easily. They cannot be taken apart andintegrated with the reduced method afterwards. Other ways must be foundinstead to apply the reduced integration method.The membrane and shear strains are always multiplied by the sti�ness pa-rameters EA and kGA respectively. By setting these parameters equal to zero,the membrane and shear terms are omitted from the integral equation. Af-terwards, when the bending en torsion sti�nesses are set equal to zero, themembrane and shear terms can be integrated with the one point Gauss inte-gration. The complete internal forces vector and sti�ness matrix, can be foundby summing the results.f int,e = f int,e2 point + f int,e1 point; Ke = Ke2 point +Ke1 point; (3.144)3.6 Element Mass MatrixIn the derivation of the balance equations for a 3-dimensional beam, the inertiaterms have been neglected. The beam was considered to be quasi-static. Themost important reason for this decision is that the inertia terms will have ageometrically nonlinear mass matrix as a result. In the next chapter, whenthe equations of motion are solved using a time integration method, the massmatrix is assumed to be geometrically linear. In other words, the derivation ofthe mass will not be used at all in the future. A simpli�ed mass descriptionwill be used instead.The nonlinearity in the mass description just concerns the rotational inertiaterms. When a linear description is used, all errors occur in the rotationalterms. The 3-dimensional beam developed in this chapter is assumed to beslender. This means that the radius of gyration of the beam r = pI=A issmaller than 10�4. In other words, the moment of inertia is 100 times as smallas the beams cross-section. The rotational mass which is proportional to themoment of inertia, is therefore much smaller than the displacement inertia.



3.7. CLOSURE 67Instead of allowing this small error in the mass matrix, the inertia termscan be omitted completely. The mass matrix will than reduce to a diagonallumped matrix, with zero terms in the rotational terms5. In case of a 2 nodebeam element, the discretized mass can be written asMI = ZL �A�ds (3.145)where � is the generalized lumped mass matrix� = �N1I 00 0� (3.146)This simple equation can be integrated analytically. For this speci�c two nodebeam element the reduced lumped mass matrix Me can be written in the fol-lowing formMe = diag[12m; 12m; 12m; 0; 0; 0; 12m; 12m; 12m; 0; 0; 0] (3.147)where m is the total mass of the beam, m = �AL.3.7 ClosureThe beam that has been derived in this chapter is implemented in the B2000platform as a two node beam element. Unfortunately, at the moment, thiselement is not working properly. An outline of the current state of the elementis given in this section.In linear cases, the performances of the beam are good. This implies thatthe ordinary sti�ness matrix S is derived correctly for an undeformed beam.Furthermore, the reduced integration method in order to avoid the shear lockingproblem works decently.In nonlinear cases the beam does not function right. When it is bent,the internal forces vector is wrong. The error increases with the curvature.Deformation modes where bending is not an issue, axial strain and torsion, donot have these problems. These problems can have two di�erent causes. First,when the beam is curved, the material refence frame ei is no longer equal to thespatial reference frame ti. As a result, there is a di�erence between the spatialdescription and the material description of the beam properties. Perhaps, thesetwo descriptions are misinterpreted in the derivations. In linear cases, whenthese frames are equal, this problem is not relevant. Second, the membranelocking phenomena is not tackled correctly. Since it only occurs in curvedbeams, it is an indication that it may not be banned completely. The solutioncan be found in the application of di�erent techniques or the implementationof new interpolation functions.Since the quasi-static behavior of the element is rather poor, it is not testedin a nonlinear transient analysis at all. Testcases in which the static as wellas the dynamic performances of the element are considered, can be found inchapter 6.5This idea of developing a mass matrix is also used in STAGS [22].
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4The Implicit Time IntegrationSolver
The deformation of a structure due to external loads can be described by anumber of mathematical models. The simplest one is the static linear model.This limited model is accurate when deformations of the structure remain small.Buckling behavior and stability analysis can be calculated using the nonlinearstatic equations of equilibrium. In both cases the dynamic behavior (velocityand acceleration) is neglected as well as the variation of the applied loads in thetime domain. When these dynamic phenomena are included in the model, theresulting system of nonlinear equations is called the equations of motion1. Thisis the most complete and accurate model for the description of all mechanicalbehavior of structures.All three models described above are implemented in the B2000 platform.The static linear model in the B2LIN macroprocessor, the nonlinear model inB2CONT and the kinematic model in the B2ETA macroprocessor. As opposed tothe implicit solvers B2LIN and B2CONT, the equations of motion in transientmacro-processor B2ETA are solved using an explicit solution technique. Sincethis solution technique is based on a di�erent �nite element model, B2ETA cannotdirectly be used in combination with the implicit solvers B2LIN and B2CONT.The mode jumping phenomenon (which will be discussed in Chapter 5) canbe calculated using both a nonlinear static as well as a transient solver. Toprovide a mode-jump analysis technique in B2000, the need arose to implementan implicit transient. A �rst step was taken by K. Yildirim [34] in 1996. Hissolver was called B2IDTI and was able to solve linear responses of structures,using Park's time integration method [20, 21] and Jensen's transformation algo-rithm [13]. A well �xed combination that is used in many other �nite elementplatforms, such as STAGS [22], currently under development at Lockheed Martin.1The equations of motion are often referred to as dynamic equilibrium equations or kine-matic equations. Although all terminologies are correct, in this report the �rst name will beused.



70 4. THE IMPLICIT TIME INTEGRATION SOLVERIn this chapter the linear algorithm is evaluated as well as the developmentof the nonlinear solver. In the �rst sections a number of implicit time integrationalgorithms will be examined. On the basis of stability and accuracy criteria,the best algorithms will be chosen and implemented. Methods to solve thegenerated system of nonlinear equations are reviewed in section (4.5). Finallythe solution strategies as well as the implementation of the macroprocessor willbe described.4.1 The Equations of MotionThe nonlinear equations of motion can be derived from Newton's second lawand written in the following form:M�u+C_u+ f(u; t) = 0 (4.1)where M and C are the discrete mass and damping matrices respectively; �uand _u are the acceleration and velocity vectors. The matrices M and C areassumed to be symmetric and positive de�nite2. The vector f(u; t) is the totalforce vector. This vector can be divided into an internal force vector f int(u),which depends on the displacements of the structure and an external, timedependent force vector f ext(t), so that the equation can be written asM�u+C_u+ f int(u) = f ext(t) (4.2)When the internal forces of the structure are described by a linear function,they can be rewritten as f int(u) = Ku where K is the linear sti�ness matrix,that is constant for all displacements. In that case, the equations of motionreduce toM�u+C_u+Ku = f ext(t) (4.3)This linearized formulation can only be used when displacements are assumedto remain very small.4.1.1 Loading and Initial ConditionsThe nonlinear equation of motion can be considered a second order non-homogeneousdi�erential equation, ODE in short. A structural model governed by this equa-tion, can be loaded in two di�erent ways: by a prescribed force function or byprescribed displacements. A combination of both is possible as well.Prescribed external forces:The load is applied as discrete time dependent external forces or moments.In the ODE, these loads are present in the external load vector f ext(t),the non-homogeneous right-hand-side of the dynamic equation. Likewise,2When the mass and damping matrices are assumed to be nonlinear, i.e. they dependon the current displacement, this is not necessarily true. In some conditions, both the massand damping matrices can become a-symmetric. However, in this report these matrices areconsidered linear.



4.1. THE EQUATIONS OF MOTION 71body and surface forces such as gravitational forces and traction have tobe translated into discrete nodal forces before they can be added to theexternal forces vector.Prescribed displacements:The structure can also be deformed by prescribing certain displacements.In real life such a deformation can be found in a laboratory testing bench,where for instance the buckling loads of specimens are tested by control-ling its end-shortening. The prescribed displacements have internal forcesas a result. Since the velocities and accelerations are the �rst and sec-ond time derivatives of the displacements also damping forces and inertiaforces occur in the transient process.A system of second order di�erential equations cannot be solved without initialconditions u0, _u0. In many cases the structure is undeformed and at rest, theinitial conditions u0 and _u0 are equal to 0. Initial conditions that are not equalto zero can be the results of a previous calculation, which can either be a staticanalysis with B2LIN or B2CONT3 or a previous transient analysis. In that case,the transient analysis can be restarted at a starting time t0 with the initialconditions u(t0) and _u(t0).4.1.2 Sti� EquationThe equation of motion is often called a sti� ODE due to the existence ofgreatly di�ering eigenfrequencies. In a second order di�erential equation timeconstant is the term used for eigenfrequencies of the construction. The numberof eigenfrequencies of a discrete structure is of the same order as the number ofdegrees of freedom, varying from the lowest `base' frequency up to the highest`overtone' with a period that is just a small fraction of the base period. Theimportance of these overtones in the response of the structure decreases withincreasing frequencies. It can be said that for a global dynamic analysis justthe �rst frequencies have a dominant inuence on the response of the structure.4.1.3 Rayleigh's Damping Coe�cientSince transient analysis is a relatively new �eld in (computational) mechanics,over the years, little attention was paid to the development of a proper descrip-tion of the damping. Correctly formulated damping matrices are a rarity, whichis not surprising, since the damping phenomenon is a complicated mixture ofmany physical subdivions, for example irreversible thermodynamic processesor plasticity. Many older �nite element models, does not have a description ofa damping term at all. In order to have a workable tool to model damping,Rayleigh has developed a simpli�ed formulation. The damping is considered tobe a summation of the element inertia (mass) and sti�ness matrices.C(u) = �M+ �K(u) (4.4)3When the results of a static analysis are used to restart the transient analysis, the initialvelocity _u0 is of course equal to zero.



72 4. THE IMPLICIT TIME INTEGRATION SOLVERThe positive factors � and � are the so-called Rayleigh damping factors. Notethat in the nonlinear case, the damping is dependent on the displacements.Although this formulation is not correct by far, simple global damping phe-nomena can be simulated quite well. In section (5.2.2) two models are presentedto calculate proper values for � and �.4.1.4 Solution StrategiesThe equation of motion will be solved using a implicit integration method.Implicit integration methods can be divided into two classes: methods to solve�rst order ODE's and methods to solve second order ODE's. In this particularcase the equations of motions will be transformed into a �rst order ODE �rstby using Jensen transformation algorithm [13]. The ODE's will be solved usinga special class of implicit integration methods, the linear multi-step methods.In the following sections, an appropriate linear multi-step algorithm will beselected after investigating its accuracy and stability. Furthermore the trans-formation of the ODE using Jensen algorithm will be discussed. Methods tosolve the generated nonlinear system of equation will be reviewed in sections(4.5) and (4.6).4.2 Linear Multi-step MethodsIn many time integration methods, like for instance the well known Runge-Kutta method, the value of a variable y(tn) at step tn is determined by usingthe information obtained in the previous step, at tn�1. In order to obtain amore accurate and stable iteration method, it can be useful to use the functionvalues in more than one previous meshing point (tn�1; tn�2; : : : ; tn�k). Suchmethods are called linear multi-step methods4 (LMS in short) or more speci�c:k-step methods.Strictly speaking, i.e. from the mechanical point of view, this approach isnot correct. The dynamic behavior of structure does not depend on its behaviorin the past, it does not have memory capacities. In principle, every calculationcan be restarted at any point by using the current displacements and velocitiesand neglecting all previous steps. In the the, the consequences of using also thepoints tn�1; tn�2; etc. will be pointed out.In general, LMS schemes can be divided in two classes: the k step 1 deriva-tive and the k step 2 derivative schemes for �rst and second order di�erentialequations respectively. Since the dynamic equation will be transformed into a�rst order system, only the �rst class of LMS schemes will be considered.4Note that the concept linear in the name linear multi-step methods has nothing to dowith the linearity of the dynamic equation (4.1). On the contrary, the LMS method can usedto solve nonlinear equations as well. The term linear stands for the linear form in which themethod is expressed.
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Figure 4.1: The solution of the �rst order di�erential equation in the previoustime steps4.2.1 General Form of a Linear Multi-step SchemeConsider a system of N �rst order di�erential equations,_y = f(y) (4.5)where _y is the �rst derivative of y in time t and f(y) is an arbitrary (non)linearfunction of y (f(y) : RN ! RN ). The equation is supposed to be solvednumerically, up to the n � 1th step at t = tn�1, as indicated in �gure (4.1).Since the time-step is constant, it is possible to formulate a kth order polynomthat connects these solutions. The solution of (4.5) at t = tn can be foundby extrapolation using this polynom. The polynomials can be constructed byusing several techniques, which for example can be found in [7].The polynomial that connects the current and previous solutions can bewritten in the following general form.kXi=0(�iyn�i � h�ifn�i) = 0 (4.6)The coe�cients �i and �i follow from the technique that is used to set up thepolynom and determine the kind of method. The coe�cient �0 is often set to 1resulting the following alternative form of an LMS scheme in which the currentsolution yn and its derivative _yn are separated from the previous solutions (notethat the identity _y = f(y) must hold).yn = h� _yn + hyn (4.7)where h� is the modi�ed time steph� = h�0 (4.8)and hyn the historical portion containing the results in the previous steps:hyn =Xi=1 [h�if(yn�i)� �iyn�i] (4.9)



74 4. THE IMPLICIT TIME INTEGRATION SOLVERSince 1950, a number of LMS schemes have been developed for a variety ofpurposes. In order to select the best method to solve the the second orderdi�erential equation, two phenomena must be considered �rst, stability andaccuracy. In the next paragraphs these notions are examined.4.2.2 Spectral AnalysisIn order to study the stability behavior of LMS schemes applied to structuraldynamics, it is important to investigate the spectral properties of the equationsof motion. These spectral properties describe the kinematic behavior of a con-struction when it is released from a certain deformation with a certain initialvelocity, when no external forces are applied. In other words, the dynamicbehavior of a structure is stored in the spectral properties.The equation of motion will be examined by transforming it to a �rst orderO.D.E. �rst. This will be done using a standard reduction technique, whichtransforms the equation of motion into a space-state equation by assuming anew vector y which is composed of both the displacement and the velocityvector.y = �x_x� (4.10)The equation of motion can be written as�x =M�1[�C_x�Kx+ f ext] (4.11)whereM�1 is the inverse of the mass matrix. This expression can be combinedwith (4.10) to yield� _x�x� = � 0 1�M�1K �M�1C� �x_x�+ � 0M�1f ext� (4.12)or, equivalently_y = Gy +H(t) (4.13)where G(t) and H(t) are given byG = � 0 1�M�1K �M�1C� ; H(t) = � 0M�1f ext� (4.14)The next step in the spectral analysis is to decompose the system of equationsinto N uncoupled scalar equations. Each one of these equations describes aparticular deformation mode. Since every response is built of several di�erentmodes, the characteristics of the total response are embedded in the character-istics of these modes. The eigenvalue problem related to equation (4.13) can bewritten as:(G� �1) = 0 (4.15)



4.2. LINEAR MULTI-STEP METHODS 75where  is an eigenvector of the problem and � the corresponding eigenvalue.Substituting the expression forG obtained in equation (4.14) gives the followingexpression for the eigenvalue problem of the reduced equation of motion.�� 0 1�M�1K �M�1C�� � �1 00 1��� 1 2� = �00� (4.16)where  1 and  2 are the two elements of the eigenvector  , = � 1 2� (4.17)Equation (4.16) can be rewritten as: 2 � � 1 = 0�M�1K 1 � �M�1C+ �1� 2 = 0 (4.18)Substituting the two equations and pre-multiplying by M, yields a quadraticeigenvalue problem in terms of the unknown �.�K+ �C+ �2M� 1 = 0 (4.19)For the time being, the undamped vibration will be considered by omittingthe damping matrix C. The systems corresponding to the lth and the mtheigenmodes can be written as�K+ �2lM� 1l = 0 (4.20)�K+ �2mM� 1m = 0 (4.21)Pre-multiplying the �rst equation by  t1m and the second by  t1l yields aftersubtraction��2l � �2m� t1lM 1m = 0 (4.22)Since by de�nition �l 6= �m the following must hold t1lM 1m = �lm (4.23)where �lm is the Kronecker delta. According to the same orthogonality principle,the eigenvalue for the sti�ness matrix can be determined. t1lK 1m = ��21l�lm (no sum) (4.24)In case of equations of motion, the eigenvalue �l is often referred to as theeigenfrequency belonging to the lth mode !l.!2l = ��2l (4.25)With the model decomposition of the undamped equation at hand, the dampingmatrix C can be re-inserted. Using Rayleigh damping as presented in the



76 4. THE IMPLICIT TIME INTEGRATION SOLVERintroduction and the orthogonality functions (4.23) and (4.24), the dampingmatrix can be written as tlC m = (�� !2l �)�lm (4.26)The characteristics of an arbitrary dynamic response of a structure can beexpressed in terms of eigenfrequencies and damping ratio's. The damping of asingle degree of freedom system is always expressed asc = 2�l!l (4.27)where � is the damping ratio. In this case the damping is equal to (��!2l �). Thedamping ratio of the lth mode can now be expressed in terms of the Rayleighconstants.�l = �+ ��2�l (4.28)After substituting of the Rayleigh damping matrix and using the terminologyabove, the solution in equation (4.26) can be written as�2 + 2�l!l�+ !2l = 0 (4.29)The equation can be solved analytically for the eigenvalues �. The possiblesolutions of this equation can be divided into four groups.Damping Eigenvalues Description of response1. � = 0 �1;2 = �i! Undamping vibration2. 0 � � < 1 �1;2= � �! � i!p1� �2 Underdamped vibration3. � = 1 �1;2 = �! Critically damped vibration4. � > 1 �1;2 = ��! + i!p1� �2 Overdamped vibrationThe complex solutions for �1;2 can be plotted in a complex plane C . All possibleeigenvalues are in the negative half plane of this complex plane, including theimaginary axis, �g. (4.2), since by de�nition both �l and !l are assumed to bepositive and real.4.2.3 Stability Regions of LMS SchemesIn the investigation of the spectral properties of an arbitrary �rst order LMSscheme, the following single degree of freedom, �rst order ODE will be consid-ered. _y = �y (4.30)
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Figure 4.2: Area in the complex plane in which �1;2 occurswhere � is the complex eigenvalue for this problem. An analytical solution ofthis simple equation is known. At a time t = tn (tn > 0) and for an initial valuey(tn�1) the value of y(tn) is:y(tn) = e�[tn�tn�1]y(tn�1) 8 tn � tn�1 > 0 (4.31)In the previous section it has been shown that � is always complex and in thenegative half plane of the complex space. The solution of the �rst order ODE,y(tn), is therefore complex and decaying as well.jy(tn)j < jy(tn�1)j 8 tn > 0 (4.32)A numerical solution can be obtained by using an LMS scheme, as presentedin equation (4.6). In this case f(y) = �y, so that,kXi=0(�i + h�i�l)yn�i = 0 (4.33)In this equation the new results yn can be connected to the previous resultsyn�i with the ampli�cation matrix A.26664 ynyn�1...yn+1�k37775 = A26664yn�1yn�2...yn�k37775 (4.34)where the k � k ampli�cation matrix can be written as:A = 2666664�(�1��h�1)�0��h�0 �(�2��h�2)�0��h�0 �(�3��h�3)�0��h�0 : : : �(�k��h�k)�0��h�01 0 0 : : : 00 1 0 : : : 0... ... ... . . . ...0 0 0 : : : 0
3777775 (4.35)
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Figure 4.3: Stability region of an arbitrary LMS schemeSince the solution of the di�erential equation is always decaying, the ampli-�cation of the solution may never be greater than jj1jj. In order words, theconvergence of an LMS scheme can be proven whenjjAjj < 1 (4.36)where jjAjj is the natural matrix norm of the matrix A. There are manyexamples of natural matrix norms that can be applied to this equation. A moreapplicable condition is given by Hughes et al. [10].De�nition 4.1 An LMS scheme is stable when all eigenvalues �l=1;2;:::k of theampli�cation matrix A are smaller than one in modulus.The eigenvalues �l of the ampli�cation matrix A can be determined using thefollowing formulajjA� �l1jj = 0 (4.37)The collection of complex values �lh, for which the eigenvalues of the ampli�ca-tion matrix are smaller than 1, can be plotted in the complex plane, as shownin �gure 4.3. The stability behavior of LMS schemes (and time integrationmethods in general) can be divided into a number of classes measured to thestability properties. These classes are proposed by C.W. Gear [7, 10]. The twomost important degrees of stability are absolute stability and A-stability.De�nition 4.2 The region of absolute stability of an LMS method is the setof �h 2 C at which the method is absolutely stableDe�nition 4.3 A numerical method is said to be A-stable if the solution pro-duced by the LMS scheme approaches 0 when the number of steps goes toin�nity.If an LMS scheme is stable for all possible imaginary values of �h it is calledunconditionally stable. In practice this means that there is no restriction in thechoice of the time step h. All LMS schemes where the stable region includes the



4.2. LINEAR MULTI-STEP METHODS 79complete left-hand-side of the complex plane are called unconditionally stable.When due to numerical damping (see next section) the solution decays to zerowhen the number of steps n go to in�nity, the scheme is also A-stable. Themost useful LMS schemes are those that satisfy these two conditions.4.2.4 AccuracyBesides the stability of the method, there are other important characteristicsthat inuence the performances of an LMS scheme. Although the iterationprocess can converge, there may be errors in the calculations. These errorscan be divided into 3 categories: the truncation error, numerical damping andfrequency distortion or the so-called phase shift.Truncation errorThe truncation error is the di�erence between an analytically correct answer ata certain point tk and the numerical solution at this point. Although the chosentime step does not inuence the stability of an A-stable method, it does hasits inuences on the error. When the time-step is larger, the truncation errorwill be larger too. This error may seem small in the beginning, errors made inprevious steps will accumulate the next error.Numerical DampingThe response of a structure calculated with an A-stable LMS scheme alwaysdecays to zero, even when the there are no damping terms in the equationof motion. During the calculation, a little amount of energy is dissipated.This e�ect is called numerical damping and is inherent to most LMS schemes.Despite it truncates the numerical solution, it has a number of beni�ts.The unstability of a time integration method can be seen as the presence ofnegative numerical damping. The total amount of energy grows and hence thedisplacements or velocities are every step a little to high compared to the realconverged solution. After a number of steps, these disturbances become biggerand bigger with divergence as a concequence. When there is a little amount ofnumerical damping, these e�ects are immediately counteracted and the solutionremains stable.The numerical damping is most often proportional to the time step. Timesteps that are large compared to the vibration mode periods, have a largeamount of damping as a result. As a consequence of this, numerical damping hasanother additional bene�t. The overtones of a vibration, which are recognizedby their high frequencies, are damped since the chosen time step is very largecompared to their periods.It is di�cult to determine the amount of numerical damping for each methodanalytically, so one must rely on numerical techniques. For instance, the damp-ing can be determined by calculating the numerical behavior of a system, witha known analytical response.



80 4. THE IMPLICIT TIME INTEGRATION SOLVERFrequency distortionFrequency distortion, or period shift, is the e�ect that the calculated period ofthe vibration is shorter than the actual period. Again, this e�ect is proportionalto the time step. When the time-step is small compared to the period of thevibration, the frequency distortion will be small.4.2.5 Nonlinear StabilityWhen the equations of motion are nonlinear, the eigenvalue �l is not constantand usually varies at each time step. It can even be possible that the eigenvaluebecomes positive at some time steps. The previous conclusions concerning thestability of the LMS methods are no longer valid under all circumstances.Since the eigenvalue is also time dependent, an alternative notation will beused. The eigenvalue at the nth step will be denoted by �n. The ampli�cationmatrix A for nonlinear equations can be written asA = 2666664�(�1��n�1h�1)1��nh�0 �(�2��n�2h�2)1��nh�0 �(�3��n�3h�3)1��nh�0 : : : �(�k��n�kh�k)1��nh�01 0 0 : : : 00 1 0 : : : 0... ... ... . . . ...0 0 0 : : : 0
3777775The eigenvalues � of the ampli�cation matrix depend on the combination ofthe current and the previous eigenvalue �n�k of the problem. Again the LMSscheme is stable if all eigenvalues � of the ampli�cation matrix are smaller than1. However, since the system of stability regions depends on more than oneeigenvalue �, it cannot be drawn in the complex plane anymore.4.3 Selection of an Appropriate LMSIt may be clear that the choice of the LMS scheme relies on the type of equationthat has to be solved. Linear or nonlinear equations require di�erent integrationmethods and even the presence of a damping matrix can inuence the rightchoice for an LMS scheme. In this section a number of LMS schemes, whichhave been developed for structural equations4.3.1 Trapezoidal RuleIt has been proven by Dahlquist that the most accurate A-stable method is thetrapezoidal rule [10]. This method is in fact a 1-step method, but it will bepresented as an LMS method. The trapezoidal rule is one of the manifestationsof the Newmark algorithm as presented by Bathe [1], which can be understoodto be an extension of the linear acceleration method. The displacement andvelocity vector can be calculated usingun = un�1 + h[(1 � �) _un�1 + � _un] (4.38)



4.3. SELECTION OF AN APPROPRIATE LMS 81where the free variable � is a parameter that can be used to tune the integrationaccuracy and stability. In case � = 12 the trapezoidal rule is obtained. In theLMS conventions, the �i and �i coe�cients are (recalling that �0 = 1):Method �0 �1 �1 �2 �3 Trunc. ErrorTrap. rule 12 12 �1 O( 112h3)Table 4.1: LMS constants and truncation error for the trapezoidal ruleStabilityThe implicit trapezoidal rule is unconditionally stable for linear equations. Thestability region encloses the complete left hand side of the complex plane C , theimaginary axis included, as can be seen from �gure (4.4). The characteristicsof this method in nonlinear analysis are rather poor due to the changing eigen-values of the response. When one of the eigenvalues of a previous step �n�1is smaller than the current eigenvalue, the method becomes unstable. For thisreason it cannot be used in a nonlinear analysis.AccuracyThe method appears to be very accurate. As can be seen in the �gures (4.5)and (4.6) the trapezoidal rule does not have any numerical damping at all andthe frequency distortion is the lowest one of all known LMS schemes. Thetruncation error is also in proportion. Most probably, the absense of numericaldamping leads to the unstability in nonlinear analysis.4.3.2 Gear's MethodOne of the �rst methods that were pseci�cally designed to deal with the stabilityproblems of sti� equations were the k-step Gear's methods. Gear proposed aset of 6 k-step methods, but only the 2 and 3 step methods will be discussedhere. The derivation of these methods is rather complicated and will not bereviewed in this context. For more information, one can refer to [7]. The LMScoe�cients of these methods are:Method �0 �1 �2 �3 �4 Trunc.errorGear 2 step 23 43 -13 O(29h3)Gear 3 step 611 1811 - 911 211 O( 322h4)Table 4.2: LMS constants and truncation errors for Gear's 2 and 3 step method
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Figure 4.4: Stability regions for the trapezoidal rule, Gear's multi-step methodsand Park's method.StabilityThe stability regions of the Gear 2- and 3-step methods are illustrated in �gure(4.4). As may be concluded from this �gure, the 2-step Gear method is in factA-stable, that is, the region is which instability occurs is completely in the �rstand fourth quadrant of the complex plane. The imaginary axis is completelyin the stable region. The instability region of the 3- (and higher step-) Gearmethods however contains a little piece of the second and third quadrant as wellas the imaginary axis. As a result of this, this LMS scheme is inappropriate forstructural dynamic applications.AccuracyAlthough the 2- step Gear method is unconditionally stable, it produces areasonable amount of numerical damping. When the time step is chosen 1=10thof the period, the numerical damping �� is over 0.1. The unstability of the threestep method also reects in the �gure for numerical damping. For small timesteps, the numerical damping is negative. This condition will always lead tounstability.4.3.3 Park's MethodThe multi-step methods described earlier all have some serious problems. Mostmethods have very poor stability behavior, like for instance the trapezoidalrule or Gear's 3-step method. On the other hand, the unconditionally stableGear's 2-step method adds a large amount of numerical damping to the system.
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Figure 4.5: Numerical damping ratios versus relative time step h=T of thetrapezoidal rule, Gear's multi-step methods and Park's method.
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Figure 4.6: Numerical period shift or frequency distortion versus relative timestep h=T of the trapezoidal rule, Gear's multi-step methods and Park's method.



84 4. THE IMPLICIT TIME INTEGRATION SOLVERPark's method intents to combine two such methods, in order to eliminate bothbad characteristics with an unconditionally stable method, with hardly anydamping, as a result [21]. The new method P is constructed out of two methods(m and n steps respectively) using the following equation:Pm;n = CmGm + CnGn (4.39)where the multipliers Cm and Cn are constant and the identityCm + Cn = 1 (4.40)must hold. It need no proof that when both Gm and Gn are linear multi-stepmethods, Pm;n is a linear multi-step method as well. The best result, withrespect to the stability of the method, is obtained when using Gear's 2-stepmethod (G2 in short) �rst. In principle every combination of this method andan arbitrary (unstable) method, using the right multipliers, will lead to anunconditionally stable method.P2;n = C2G2 + CnPn (4.41)The best results however can be achieved by combining the Gear's 2 and 3 stepmethods using equal weighting coe�cients, C2 = C3 = 12 . The coe�cients forthe LMS scheme �i and �i becomeMethod �0 �1 �1 �2 �3 Trunc. errorPark 610 -1510 610 - 110 O( 110h3)Table 4.3: LMS constants for Park's methodStabilityAccording to �gure (4.4) it may be clear that the Park method is indeed A-stable, the complete left-hand-side of the complex plane as well as the imaginaryaxis is in the stability region.It can be shown[20] that for nonlinear equations, the stability of the methoddepends on the current eigenvalue only, instead of a combination of previousand current eigenvalues, which was the case for the trapezoidal rule. SincePark's method is A-stable in the linear case, it is also A-stable for nonlinearequations.AccuracyFurthermore, the amount of numerical damping is smaller compared to Gear's2-step method, as well as the frequency distortion. This is the result of thecombination between the overdamped 2-step method and the 3-step methodwith negative damping. Also the amount of frequency distortion is an averageof both methods. In case of nonlinear equations the numerical damping andfrequency distortion are not constant, since the eigenvalue � changes at everystep.
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Figure 4.7: Numerical damping for Park's method, including 1st and 2nd step4.3.4 Cold Restart ConditionsIt is obvious that LMS schemes cannot be used when there are not enoughprevious points available. For instance, the 3-step Park method requires specialstarting algorithms for the �rst and second step. It is possible to use thetrapezoidal rule and Gear's 2-step method for the �rst two steps. Nevertheless,when the equation is nonlinear, the trapezoidal rule can be become unstable.Gear's two step method produces a large amount of numerical damping.Together with the development of his 3-step method, Park proposed a 1-and 2-step method as starting algorithms.Method �0 �1 �1 �2 �3Park (1st step) 610 410 �1Park (2nd step) 610 210 �1210 210Park (full) 610 �1510 610 � 110Table 4.4: LMS scheme for Park's method, including 1st and 2nd stepAlthough these starting algorithms have worse accuracy qualities comparedto the full Park method, their stability behavior is on the same level.



86 4. THE IMPLICIT TIME INTEGRATION SOLVER4.3.5 ConclusionThe best choice of an LMS scheme depends on the spectral properties of theODE which has to be solved. In case of the sti�y stable kinematic equation,three methods are absolutely stable, the trapezoidal rule, Gear's 2-step methodand Park's method.Gear's 2 step method is the least accurate of these. It has a rather largeamount of numerical damping. The trapezoidal rule does not have any numer-ical damping at all, but can become unstable when the equation is nonlinear.Park's method is the most allround method. Its stability characteristics aregood even in the nonlinear case, although it is less accurate than the trape-zoidal rule.When the equation is linear, the trapezoidal rule is the best choice, sincethe method is unconditionally stable for linear equations and it produces nonumerical damping. When the equation is nonlinear, Park's 3-step method ispreferred. Although it produces a notable amount of numerical damping, itsstability behavior for nonlinear is much better. Gear's 2- and 3-step methodsdo not have this positive characteristics, but may be useful in some very speci�csituations.4.4 Implementation of the LMS methodBefore the LMS schemes can be used, the system of second order di�erentialequations has to be transformed into a system of �rst order ODE's. In theprevious section, when the spectral properties were determined, the equationwas transformed into a so-called state-space. Although this method pleases fora rather straightforward, analytical evaluation of a di�erential equation, it hasa lot of disadvantages. First of all, the number of equations will be doubled.In practice, a system of equations which is 2 times as big, needs approximately22 = 4 times as much numerical actions to solve. Also, the presence of theinverse of the mass matrix (M�1) in the formulation, will make the solutionprocedure more sensitive for badly formed mass matrices.The usage of an LMS scheme o�ers the possibility to use an alternativemethod proposed by Jensen [13]. This method does not have the two prob-lems mentioned above. It is very robust and extremely suitable for numericalapplications.4.4.1 Jensen's Transformation AlgorithmConsider an auxiliary system of equations of the formv = AM_u+Bu (4.42)Where the matrices A and B are arbitrary except that A is not singular. Thederivation of this equation with respect to time t gives_v = AM�u+B_u (4.43)



4.4. IMPLEMENTATION OF THE LMS METHOD 87Multiplication of the (non)linear dynamic equilibrium equation (4.3) with thematrix A will giveAM�u+AC_u+AKu = Af ext(t) (4.44)Substituting (4.43) into (4.44) results in the following system of equations:� AM 0AC�B I�+ � _u_v� � B �IAK 0 � �uv� = � 0Af ext� (4.45)The general formula for a linear multi-step algorithm (4.7) can now be substi-tuted.� AM 0AC�B I� �uv�+h� � B �IAK 0 � �uv� =h� � 0Af ext�+ � AM 0AC�B I� �huhv� (4.46)After collecting terms� AM+ h�B �h�IA(C+ h�K)�B I � �uv� = �AMhuAq � (4.47)where hu and hv are the historical vectors of the displacement u and auxiliaryvector v respectively andAq = h�Af ext + (AC�B)hu + hv (4.48)This matrix equation can be solved algebraically by multiplying the second rowwith h� and multiplying with A�1 to obtainEu =Mhu + h�q (4.49)where E is the dynamic sti�ness matrixE =M+ h�C+ h2�K (4.50)The auxiliary vector v can be solved usingv = Aq� [A(C+ h�K)�B]u (4.51)The equations still contain the two matrices A and B. Since they could bechosen arbitrary it is convenient to take A = I and B = C, remaining theso-called linear Jensen equation,[M+ h�C+ h2�K]u =Mhu + h�hv + h2�f ext (4.52)which can be re-written asEu = g (4.53)



88 4. THE IMPLICIT TIME INTEGRATION SOLVERwhere g the dynamic history-force vector :g =Mhu + h�hv + h2�f ext (4.54)The linear Jensen equation can now be solved for u. When a nonlinear elementformulation is used, the term Ku in equation (4.52) must be replaced by f int(u)yielding the nonlinear Jensen equationMu+ h�Cu+ f int(u) =Mhu + h�hv + h2�f ext(t) (4.55)The solution of this particular equation requires nonlinear solution techniques,which will be described in section 4.5. After the displacement u has beencalculated, the velocity of the system can be determined by using the originalmulti-step formula (4.7)._u = u� huh� (4.56)The accelerations need not to be calculated in this procedure.4.4.2 Prescribed DisplacementsThe prescribed displacements can be formulated as time dependent boundaryconditions. Since they can be nonzero, prescribed displacements imply an in-ternal force. In order to get a better idea of handling time dependent boundaryconditions in a system of equations, a simple example, the linear static equation,is considered �rst.Linear Static EquationConsider the following linear system of static equilibrium equationsKu = f ext (4.57)where K is the sti�ness matrix and f ext the external forces vector. The totalnumber of degrees of freedom in the equation is N . There are M (0 � M <N) prescribed displacements. The displacement vector u can be split into 2parts, uf and up, where the subscripts f and p stand for free and prescribedrespectively. The vector up consists of zeros except for the degrees of freedomthat are prescribed; in uf all elements are nonzero except for the prescribedones. Obviously, the following equation must holdu = up + uf (4.58)Equation (4.58) can be substituted into the equilibrium equation (4.57)Kuf +Kup = f ext (4.59)The second term, Kup, is known and can therefore be carried to the right handside of the equationKuf = f ext �Kup = f ext � fp (4.60)



4.4. IMPLEMENTATION OF THE LMS METHOD 89where fp denotes the forces due to prescribed displacements. The system ofequations can now be solved for uf . Some problems can occur since the systemis undetermined: the number of degrees of freedom has been reduced to N�M ,while the number of equations remains N . Such an `unbalanced' system mustbe solved using a penalty values technique. This technique is widely used in�nite element methods and therefore too trivial to discuss here.When the solution for uf has been obtained, the displacement vector mustbe recomposed by adding the prescribed displacements to the reduced displace-ment vector yielding u = uf + up.The Dynamic equationSince the velocities and the accelerations are the time derivatives of the dis-placement vector, these vectors can also be divided into a free and a prescribedone. �u = �uf + �up (4.61a)_u = _uf + _up (4.61b)u = uf + up (4.61c)The prescribed accelerations and velocities introduce inertia and dampingforces. Following the same procedure as before, the nonlinear dynamic equationcan be written asM�uf +M�up +C_uf +C_up + f int(u) + f int(up) = f ext(t) (4.62)Using Jensen procedure and an LMS method, the following nonlinear equationcan be obtained.Mun + h�C(un) + h2�f int(un) =Mhun � h�hvn � h2�f ext(t)� gp (4.63)where gp is the force vector due to prescribed displacementsgp =Mupn + h�C(upn) + h2�f int(upn) (4.64)or, when the equation is lineargp =Mupn + h�D(upn) + h2�Kupn (4.65)The reduced system can be now solved for uf as described above. Afterwards,the correct displacement vector u must be recomposed. The velocities (andaccelerations) can now be calculated using with the total history vector hun,according to the original LMS formula_un = un � hunh� (4.66)Using this method, it is not necessary to evaluate the prescribed velocities bydi�erentiating the prescribed displacements. The total velocity vector can becalculated using the total displacement vector.



90 4. THE IMPLICIT TIME INTEGRATION SOLVER4.4.3 The General ProcedureSummarizing, the full procedure to come to the linear or nonlinear Jensenequation is given in the table below stepwise.1. Linear: _vn�1 = f ext(tn�1)� f int(un�1)Nonlinear: _vn�1 = f ext(tn�1)�Kun�12a. if n = 0,Linear: v0 =M_u0 + �Mu0 + �Ku0Nonlinear: v0 =M_u0 + �Mu0 + �f int(u0)2b. elseif n > 0, vn�1 = hvn�1 + h� _vn�13. hvn = hPi=1 �i _vn �Pi=1 �ivn4. hun = hPi=1 �i _un �Pi=1 �iun5. gn =Mhun � h�hun � h2�f ext(tn)6. Linear: gpn = (1 + h��)Mupn + h�(� + h�)KupnNonlinear: gpn = (1 + h��)Mupn + h�(� + h�)f int(upn)7. Solve for un:Linear: [(1 + �h�)M+ h�(� + h�)K]un = gn � gpnNonlinear: (1 + �h�)Mun + h�(� + h�)f int(un) = gn � gpn8. _un = (un � hun)=h�9. Advance step number n = n+ 1 and time t = t+ h10. If t < tmax go to 1.else stop.endif
The nonlinear equation at step number 7 must be solved using iterative tech-niques. These methods are discussed in the next section.



4.4. IMPLEMENTATION OF THE LMS METHOD 914.4.4 Additional CalculationsApart from the displacements, velocities and in the nonlinear case internalforces some additional quantities can be calculated on request.Kinetic EnergyIn order to control the mode-jumping process (which will be discussed in thenext chapter), and to check the amount of numerical damping, the kinetic, andstrain energy can be calculated at each step. The total energy at a time t canbe calculated using the following integral equation.tZ0 _u(�)[M�u(�) +C_u(�) + f(u(�);�)]d� = 0 (4.67)The kinetic energy and the strain energy are:T = tZ0 _u(�)M�u(�)d� (4.68)	 = tZ0 _u(�)f(u(�); t)d� (4.69)The dissipated energy, a function of the damping matrix C is less important inthis case. Integration of these 2 terms givesT = 12 _unM_un (4.70)	 = 12unf(un; tn) (4.71)AccelerationsIn the Jensen procedure, the accelerations are not calculated. In some occa-sions however, the accelerations need to be known. Additional calculations arerequired then.There are three ways to calculate the accelerations. The �rst method is byusing the equation of motion. Since at the end of the calculations at a timestep 2 of the 3 unknowns in the equation are known (un; _un) the third one �uncan be calculated using the equilibrium equations.M�un = �C_un � f int(u) + f ext(tn) (4.72)This procedure is rather time consuming, since an extra system of equationsneeds to be solved. When the mass matrix is semi-de�nite, which is possible insome cases, this equation cannot be solved at all.In order to reduce the amount of calculations, the acceleration can be cal-culated just in the �rst time step t = t0. The subsequent accelerations can



92 4. THE IMPLICIT TIME INTEGRATION SOLVERbe determined by extrapolation. This method is indeed less laborious but alsorather inaccurate, especially after a large number of time steps.The third method that is as accurate as Jensen's procedure and not verycomplicated is based on the LMS scheme that is used to calculate the velocities.The acceleration vector �un can be calculated using a history vector that is basedon the velocities in the previous time steps.�un = _un + h _unh� (4.73)This method is fast and the estimated error of this procedure is of the sameorder as of the calculation of the velocity vector.4.5 Nonlinear Solution TechniquesThe nonlinear equation derived in the previous section cannot be solved di-rectly. Numerical methods should be used instead. In general, two classes ofmethods for solving nonlinear equations are known, i.e. interpolation meth-ods (method of bisection, false position method) and extrapolation methods(Newton-Raphson method). The �rst class of methods is most often used forsingle nonlinear equations since these methods are fast and very simple to im-plement. System of equations need to be solved using extrapolation methods.In this section we will take a closer look at extrapolation methods, NewtonRaphson methods in particular.4.5.1 Single Degree of Freedom SystemsFirst the methods are derived for a single degree of freedom system. Doing so,it is possible to explain the process by a simple graph. Later on, the methodsare adjusted for a multi degree of freedom system and applied to the currentequations.Newton Raphson MethodAn arbitrary nonlinear equation f(x) = 0 can be expanded into a Taylor seriesin an initial guess xk close to the presumed root xk+1.f(xk+1) = f(xk) + �xf 0(xk) + �x22 f 00(xk) +H:O:T: (4.74)where f 0 is the derivative of f with respect to x and �x = xk+1 � xk. Sincexk+1 is a presumed root of the function f(x), the equation above can be writtenas f(xk+1) = 0 (4.75)After dropping the second order (and higher order) terms in the expansionf(xk) + �xf 0(xk) = 0 (4.76)



4.5. NONLINEAR SOLUTION TECHNIQUES 93The increment �x can be calculated using the linearized equationf 0(xk)�x = f(xk) (4.77)The new value xk+1 can now be calculatedxk+1 = xk +�x (4.78)The iteration must start at a appropriate point, x(0) close enough to the root5.There are many methods to determine an appropriate initial guess (or predic-tor). The iteration process must be continued until the residue of the functionf(xk) approaches zero, or when the increment �x approaches zero.Modi�ed Newton RaphsonThe method described above is often called Full Newton Raphson: the tangentof the equation, f 0(xk), will be adjusted each iteration step. In some caseswhen the tangent is assumed to change very slowly, it is possible to use the oldtangent f 0(x0) for every subsequent iteration step.x(k+1) = xk � f(xk)f 0(x0) 8 k > 0 (4.79)It is not surprising that in this case it can take more iteration steps before aconverged solution has been found. On the other hand, the tangent f 0(x) onlyhas to be evaluated once in the iteration process. This aspect will be muchmore important when these methods are applied to large systems of equations.4.5.2 System of EquationsThe analysis described in the previous section can easily be extended to a systemof N equations. Consider a nonlinear function f .f(x) = 0 RN ! RN (4.80)For every single equation f1; f2 : : : fN a Taylor expansion series can be created.f1(xk+1) = f1(xk) + �x1 @f1(xk)@x1 +�x2 @f1(xk)@x2 + : : :+�xN @f1(xk)@xN +H:O:T:f2(xk+1) = f2(xk) + �x1 @f2(xk)@x1 +�x2 @f2(xk)@x2 + : : :+�xN @f2(xk)@xN +H:O:T:(4.81)fN (xk+1) = fN (xk) + �x1 @fN (xk)@x1 +�x2 @fN (xk)@x2 + : : :+�xN @fN (xk)@xN +H:O:T:This equation can be written in a matrix formf(xk+1) = f(xk) +H�x+H:O:T: (4.82)5It may be clear that this procedure will always �nd a root of the function. However,nonlinear functions may have multiple roots, so that the right root is found as long as theinitial guess is close enough.



94 4. THE IMPLICIT TIME INTEGRATION SOLVERwhereH is the Jacobian of the function f(x) and �x is the incremental solutionvector, �x = [�x1;�x2; : : : ;�xn]t. The sequel of derivation is similar to thesingle degree of freedom equation. The increment can be calculated using thefollowing formulaH�x = f(x) (4.83)Of course again a distinction can be made between the full and the modi�edNewton-Raphson method. In the �rst case the Jacobian H(x) changes at everyiteration step while in case of the modi�ed method the Jacobian is constantduring the process. Before judging the performances of both these methods,it is important to know a little about the numerical methods that are used tosolve system of equations.All methods to solve the linear system of equationsAx = b are based on thesame principle. First the matrix A is decomposed (translated) into a number offactorized matrices. The solution x can then be calculated directly using thesefactorized matrices and the vector b. For example, the solver that is used inthe B2000 platform, uses a LDLT decomposition. The matrix is decomposed ina triangular matrix L and a diagonal matrix D.These decompositions of the matrix are by far the most laborious part ofthe process. They can use up to 90% of the total solving time. However, aslong as the matrix remains unchanged, there is no need to decompose it again:the old factorization matrices can still be used.These considerations can be projected on the Newton Raphson methods.When the full Newton method is used, the Jacobian must be constructed anddecomposed every iteration step. And although this method needs less stepsto converge, the gain of speed is immediately lost due to decomposing time. In`ordinary' nonlinear equations of motion, the nonlinearities remain small andthe response of the structure is a rather smooth function. The modi�ed methodis in this case much faster than the full Newton method. However, there arecases that the full Newton method is preferred. For instance when there arecontact mechanisms used in the model: the response can be less smooth and thefull Newton method can be the only method that �nds a converged solution.4.6 Implementation in the Nonlinear Jensen EquationThe implementation of the iteration methods in the nonlinear Jensen equationrequires some additional investigations. First of all a suitable prediction methodmust be sought. Furthermore, since the algorithm must be able to handle largerotations, the correct update of the rotation vectors must also be taken intoaccount. Finally a suitable convergence criterium must be de�ned.4.6.1 PredictionThe �rst step in the solution procedure is the determination of the predictor, apoint from which the actual iteration process can be started. There is just onecondition to this predictor: it needs to be in the neighborhood of the converged
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Figure 4.8: Prediction step and iteration processsolution. Although this requirement is rather vague (the solution is not knownbeforehand), it can be used in this case.The solution of the Jensen equation (un; t) can be represented in a RN+1space: N degrees of freedom plus the time parameter t. The time parametertn of the new converged solution (un; tn) is already known since this is thedescribed parameter. The condition stated above can be satis�ed partly whenthe predictor is on the auxiliary RN surface at tn6, see �gure (4.8). In principle,there is a number of methods available to calculate the predictor. In this casejust two of these will be discussed.The Euler method is a so-called explicit method. The predictor is calculatedregardless of the current state of the structure. Consider that the response ofthe structure is known up to n� 1th step at t = tn�1. In this point both un�1and _un�1 are known. With these solutions and the time-step h = tn� tn�1 thenext solution can be guessed using the following formula:upredn = un�1 + h _un�1 (4.84)Note that the predictor can be calculated without solving a complete system ofequations.Another way to calculate the predictor is using the original Newton Raphsoniteration procedure. In this implicit method, the predictor is calculated usingthe original Jensen equation and the previous state variables un�1, f intn�1 andKn�1. When the predictor upredn is known, the iteration procedure can becontinued using either the full or the modi�ed Newton Raphson method. Inthis case the actual predictor is of course the previous solution un�1.It is obvious that out of these two methods, the Euler prediction method isby far the fastest one. However, when it comes to accuracy, the Newton method6This approach has many resemblances to the nonlinear iteration procedure as implementedin the continuation macro-processor B2CONT. This processor is based on Riks' path-followingtechnique and will be discussed in chapter 5.



96 4. THE IMPLICIT TIME INTEGRATION SOLVERfor calculating the predictor is preferred. Therefore, both methods have beenimplemented in the transient processor.4.6.2 Jensen EquationOnce the predictor has been calculated, the Newton iteration procedure can bestarted. The �rst thing to do is the calculation of the Jacobian of the nonlinearJensen equation, recalling(1 + �h�)Mun + h�(� + h�)f int(un) = gn � gpn (4.55)Since @f int(u)@u = K(u), the Jacobian is equal toH = (1 + �h�)M+ h�(h� + �)K(un) (4.85)In terms of the Newton Raphson algorithm, the complete equation will looklike H�u = r (4.86)where the right-hand-side vector r (or residue vector), is the nonlinear Jensenequation (4.55).4.6.3 Compound RotationsThe incremental solution �u obtained by equation (4.86) must be added to theprevious solution in the iteration process u(i�1)n , according tou(i�1) +�u = u(i)n (4.87)The previous displacement u(i�1)n as well as the incremental array �un consistof displacement and rotation increments. The 3 dimensional beam element aswell as the Simo type shell elements developed by G. Rebel [23] are able toobtain large rotations. A correct update of these rotations is required. Theseincremental rotations may not be added to the full rotation. A compoundrotation tensor must be used instead.In section 3.2 the formulation of large rotations has been discussed as wellas the principle of compound rotations. In the derivation of the compoundrotation tensor, the following alternative rotation vector is used.�̂1 = 2 sin 12 jj�1jjjj�1jj �1; �̂2 = 2 sin 12 jj�2jjjj�2jj �2 (4.88)It is shown by Cris�eld [3] that after algebraic manipulation the compoundrotation vector is equal to�̂12 = � �(1� 14 jj�̂2jj)1=2�̂1 + (1� 14 jj�̂1jj)1=2�̂2 � 12 �̂1��̂2� (4.89)



4.6. IMPLEMENTATION IN THE NONLINEAR JENSEN EQUATION 97The correct � sign follows from additional calculations [2]. In terms of theJensen equation, the rotation parts of the previous solution u(i�1) can be de-noted as �̂1 and the rotational terms of the incremental vector �u as �̂2. Therotational components of the updated solution u(i)n are equal to �̂127.The history vectors also contain summations of �nite rotation components.In this derivation, however, these terms are not added properly using compoundrotations. The resulting error can be neglected as long as the total rotationsremain moderately small, say in the order of � < 1 rad. This implies that thecapacities of the new beam elements as well as Rebel's shell elements are notfully utilized.4.6.4 Converge CriteriaThe sequence of iterations on the Newton Raphson process must be continueduntil the numerical solution of the Jensen equation in step n, ukn, is close enoughto the exact solution un. Close enough is de�ned by the following convergencecriterionjj�ujj < �dispjjun�1jj (4.90)and jjrnjj < �resjj�fnjj (4.91)In the �rst equation is jjun�1jj the norm of the converged displacement vectorin the previous time-step. In the second one is jj�fnjj a force vector with thefollowing valuejj�fnjj = 8<: jjf ext(tn)jj if jjf ext(tn)jj > 0jjf int(un�1)jj if jjf ext(tn)jj = 0 (4.92)If all these vectors are null-vectors, for instance in the �rst step of the timeintegration process at t = t1, an arbitrary value can be used instead. Theterms �disp and �res are the so-called error factors. Normally both factors arechosen very small (in the order of 10�3 and smaller).4.6.5 Time Step ControlAs long as the �nite element model is de�ned correctly and the time step issmall enough to calculate at least the basetones of the structure, the iterativeNewton procedure is able to obtain converged solutions without any di�culties.In some occasions however, there can be problems �nding a converged solutions.The only variable that can be changed, without losing accuracy is the time-steph. A smaller time-step can lead to faster convergence. This procedure is oftencalled time-step cutting. It must be done in two cases7This algorithm is also implemented in the continuation macro-processor B2CONT by G.Rebel.



98 4. THE IMPLICIT TIME INTEGRATION SOLVER� The number of iterations exceeds a prede�ned number of maximum iter-ations, i.e. it takes too long before a converged solution is obtained.� The Jacobian, H which is equivalent to the dynamic sti�ness matrix E,equation (4.50), is no longer positive de�nite (negative roots occur on thediagonal of H).By the authors knowledge, there is no such method that can be used to calculatea new, optimal time-step by evaluating the current iteration process. An ad-hocapproach is used instead.The problem with cutting the time step in this case (time integration usingPark's LMS scheme) is that after each cut, the procedure must be restartedwith the less optimal 1- and 2-step method. It is therefore important to becareful in cutting the time-step. Cutting methods that adapt the time stepconstantly (as is implemented in the continuation procedure) are not suitablein this application. A less complicated procedure is used instead, which justsplits the time-step in the critical cases mentioned above.hnew = 12hold (4.93)It can be possible that after a while, the number of iterations per time-stepsdecreases. In that case the time-step can be re-enlarged. As an upper boundfor the maximum time-step hinit, the initial time-step can be used.4.7 ClosureThe implicit time integration method as described in this chapter is imple-mented in the B2000 platform as a new macro-processor B2TRANS. It can beused in combination with all other macro-processors like B2LIN, B2BUCK andB2CONT. A number of numerical examples to prove the reliability of this newmacro-processor is presented in chapter 6. The users manual is given in sec-tion A.2. In appendix B a short description of the syntaxis is igven. Also theimplementation of existing processors such as the nonlinear element processorB2EPN is discussed. A summary of all source �ules can be found in appendix C.



5The Mode-jumpingPhenomenon
The term mode jumping is often used to describe sudden dynamic changes in astatic process. In computational mechanics, the abrupt change in wave numbersin a buckling process is indicated as a mode jump. This phenomenon was �rstmentioned by M. Stein [31] when describing a buckling experiment on a atpanel. A specimen as shown in �gure 5.1a was loaded with an end shortening,in order to determine its limit load. However, after it had buckled, Stein noticedchanges (jumps) in the wave number from 5 via 6 and 7 to 8 half waves. Theload versus end-shortening diagram was of the type shown in �gure 5.1b. Thejumps in the �gure are represented by the vertical lines where the internal forcedecreases for equal end-shortening.The observed phenomena were analyzed and interpreted by several peoplein the years after. In their opinion, the answer to this problem should be soughtin the stability of the buckling modes. In general when a structure buckles, theequilibrium state can become unstable1. When the structure enters such anunstable part of this post-buckling trajectory it will move away to the neareststable equilibrium. This motion, the jump from one mode to another, attendslarge velocities and accelerations and is therefore a transient, dynamic process.In the years that followed many people tried to simulate such jumps. InFEM analysis this can be done with a transient solving routine, as developed inthe previous section. The pre-buckling state, before the unstable con�gurationhas been reached, can be calculated with a path-following technique. At thisstage, the velocities and accelerations are neglected. Just before the unstablepath has will be entered, the calculations can be continued with the transientprocessor. When a new stable static equilibrium is found,i.e. when the structure1The term stability has a di�erent meaning in this context. In the previous chapter,the word stability was used to describe the ability of a time integration method to produceconverged results over a number of time-steps. In this case, stability is used in combinationwith the ability of the structure to remain its current deformation. A more precise explanationwill be given in section (5.1.3).
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Figure 5.1: Stein's buckling experiment and load displacement relation.is at rest, the path-following method can be restarted.In this chapter a closer look will be taken at the mode-jumping phenomenonin general and the numerical aspects of the process in particular. The papers byRiks et al. [25, 27, 28] are used in these considerations. Apart from the transientpart of the solution, the quasi-static part of the calculations is examined as wellas the concept of loss of stability.5.1 The Quasi-Static SolutionWhen the loads are applied slowly to the structure, the equations governingthe equilibrium of motion, equation (4.1), can be reduced to a system of staticequilibrium equations by omitting the inertia and the damping forces. This isallowed since in a slow deformation process the accelerations and velocities areassumed to be small.f(u;�) = 0 (5.1)In this equation the load factor is denoted by �, which determines the magnitudeof the external forces or prescribed displacements. Again, a distinction can bemade between the internal and the external forcesf(u;�) = f int(u)� f ext(�) = 0 (5.2)The static equilibrium equation describes the deformation of a structure underan arbitrary load. Due to the geometric nonlinearities, deformations due tolarge load factors can not be calculated in one step, but have to be determinedin more steps, with increasing load factors. Doing so, a one dimensional curvein the space RN+1 spanned by u and � can be obtained, �gure 5.2.This load-displacement curve seems to be a history plot of a deformationprocess, which of course it is not2. It is just a collection of static equilibrium2The load displacement curve approaches a time history plot when the speci�c time is saidto be in�nite, for example when the loads are applied to the structure very slowly.
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Figure 5.2: An example of a load-displacement curve in the RN+1 spacepoints connected by a line. However, because of its resemblance to a time plot,this solution is often called a quasi-static response of a structure.The nonlinear equilibrium equation (5.1) is a system of N equations, whereN is the total number of degrees of freedom of the discrete structure. Unfortu-nately, there are N + 1 unknowns. These are the N -dimensional displacementvector u and the scalar load-factor �. The system is therefore undetermined.It can only be solved when the number of unknowns is equal to the number ofequations.One way to solve the system of equations is to reduce the number of un-knowns to N by selecting one unknown as a constant or the so-called pathparameter. It is possible to choose either the load-factor � or one element inthe displacement vector u. In the �rst case, � is used as a prescribed variable(denoted by the path parameter �) which is held constant at its value in the it-eration process in which the corresponding displacements are calculated. Thisprocedure is better known as the incremental load procedure. In the secondcase, the displacements ful�ll the role of path parameter and is therefore calledan incremental displacement procedure. From �gure (5.3) can be concludedthat both procedures can have di�culties. The incremental load procedurecannot pass the limit point A, the incremental displacement method will notpass the turning point B.5.1.1 Riks' Path Following TechniqueInstead of reducing the number of unknowns to N , the number of equationscan be increased to N+1 by adding a new equation f� : RN+1 ! R1 to thesystem (5.1). A new path parameter � is also included in this equation. The
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uBFigure 5.3: The incremental load procedure (a) and the incremental displace-ment procedure (b)new, augmented system of equations can be written asf̂ = � f(u; �)f�(u; �; �)� = 0 f̂ : RN+1 ! RN+1 (5.3)The new equation can be chosen freely, as long as it is independent of allequations in (5.1).The �rst and by far the most simple choice that will be discussed is the loadparameter � as path parameter �. The equation f� can be written asf� = � � �n�1 = �� �n�1 = 0 (5.4)where �n�1 is the load factor of the converged solution of the previous timestep. It needs no proof that this equation is independent of the system ofequations. In principle, this method is equal to the incremental load procedureas described before and can therefore not be used to evaluate limit points. Itmay be clear that there is also an alternative function f� that is related to theincremental displacement procedure.Another choice for the additional function is based on the principle of adap-tive parameterization. Instead of using either the load factor or a displacementas the parameter, it can be useful to adapt the parameter to the propertiesof the solution path. A very primitive form of adaptive parameterization is aso-called mixed procedure, �gure 5.4. In this procedure the path parameterswitches between the load factor � and a displacement u, depending on thedirection of the path.The path parameter can also be chosen in such a way that it is at any pointtangential to the path. Riks [25] derived the following additional equationf� = nT (u� un�1)� � = 0 (5.5)where nT is the so-called base-vector, which denotes the direction in whichthe new equilibrium (u; �) is sought. There are no restrictions to this vectorwhatsoever.
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Figure 5.5: Arc-length procedureIt may be clear that this method produces the best results when the auxiliarysurface is perpendicular to the path. This means that the director in equation(5.5) must be tangential to the path.n = u01 = du(�)d� j�=�1 (5.6)The additional function can than be written asf� = du(�)d� j�=�1(u� un�1)� � = h(u; �)� � = 0 (5.7)where h(u; �) is the so-called function for the auxiliary surface. The solutionof the augmented system as presented in equation (5.3) is on this surface andcan be found iteratively by using nonlinear solution techniques.5.1.2 Possible SolutionsAlthough the path can be calculated completely using this technique, it is stillimportant to discuss the properties of the solution of equation (5.4). In general,
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Figure 5.6: A bifurcation point, a crossing of two equilibrium pathsthere are two types of points on the path with very special geometrical proper-ties that need extra attention. The �rst one, which has already been mentioned,is the limit point, point A in �gure 5.3a. This singularity is solved by the intro-duction of the additional equation. The other group of special points is formedby bifurcation points. A bifurcation point is a point on the primary path thatis also an equilibrium of a di�erent, secondary path, �gure 5.6. By de�nitionbifurcation points always have loss of stability as a result.Limit PointsOn a limit point (or stationary point), the director of the path parameter ishorizontal, or �0(�) = 0. The load parameter has reached a maximum3. Whenthe path crosses such a limit point, the structure can loose stability. If so, thesepoints are called proper limit points in the sense of the stability theory. Themathematical formulation of stability will be explained in the next section.The loss of stability of limit points in reality can be explained as follows.Consider a structure , for example a cylindrical shell, which is clamped at oneend and compressed by a uniform load on the other end. At a certain momentthe exact limit point is reached. In this con�guration (ulim;�lim) the path canonly be continued when the applied load is decreased. But, decreasing theload factor will imply a relaxation of the shell and the path will be followedbackwards, in the wrong direction. The path cannot be continued in reality,which indicates the presence of instability.Bifurcation PointsAs opposed limit points, the crossing of bifurcation points is not shown be theload-displacement curve. The steps are normally too big and the direction ofthe path is preset by the previous equilibriums. Analysis of the the conditionof the sti�ness matrix must give a de�nite answer to the question how muchbifurcation points have been passed.3The director is also horizontal in a minimum of a saddle-point. Although these pointsalso occur in stability analyses, they will not be discussed here.
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Figure 5.7: Elementary forms of loss of stabilityAt �rst sight, there are not many similarities between limit points and bi-furcation points, but this is wrong. In reality, bifurcation points always occuras limit points. Due to initial imperfections in either the material boundaryconditions or the geometry of the structure. The actual path will not be exacton the mathematical equilibrium path. Near a bifurcation point, the real pathcan also be attracted by the secondary path. In most case the path will followthis path, as can be seen in �gure 5.8, with a limit point as a result. This prin-ciple is also used in FEM analyses to visualize bifurcation points. The initialimperfections are often simulated by small nodal forces.5.1.3 Stability AnalysisAs said in the previous section: the buckling path can become unstable afterpassing a limit point or bifurcation point. But what is stability? The answer tothis question will be given in this section according to two criteria, the energycriterion and the slightly di�erent Lyapunov criterion.The energy criterion states that if the potential energy of the structure atthe equilibrium state is a proper minimum, the equilibrium is stable. If thisproperty does not exist, the equilibrium is unstable. More speci�c, a givenequilibrium state (u;�) is stable if and only if the potential energy P (u;�)
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Figure 5.8: Limit point of a perturbed structuresatis�esP (u+ �u;�) � P (u;�) > 0 8�u 2 RN (5.8)The incremental displacement is assumed to be �nite but small, 0 < jj�ujj < �2.If the inequality (5.8) is not satis�ed, the equilibrium con�guration (u;�) isunstable. The energy criterion can be expanded as a Taylor series, assumingthat the equation of the potential energy can be di�erentiated in�nitely.P (u+ �u;�) � P (u;�) = @P (u;�)@u �u+ 12 @P 2(u;�)@u@u �u�u +H:O:T: (5.9)Since (u;�) is an equilibrium state, the �rst term is equal to zero. The leadingterm becomes therefore the second variation of the total energy with respect to�u. As derived in chapter 2, the total energy di�erentiated to the displacementtwice is equal to the sti�ness of the structure.@P 2(u;�)@u@u = K(u;�) (5.10)The second variation of the total energy is therefore�2(�u) = 12 @P 2(u;�)@u@u �u�u = 12�utK(u;�)�u (5.11)It can now be shown that the minimum of P (u;�) and thus stability of thecon�guration (u;�) is ensured if the second variation of the potential energy ispositive de�nite:�2(�u) > 0 (5.12)This equation implies that for all possible perturbations �u the second variationis > 0. The quadratic form is called inde�nite if there are some perturbationvectors thinkable for which the second variation is smaller than 0, i.e.�2(�u) 7 0: (5.13)



5.2. THE TRANSIENT SOLUTION 107the quadratic form is called inde�nite. The potential energy is not a minimumand the equilibrium is unstable. A borderline case occurs when the quadraticform is semi-positive de�nite, when for some �u the second variation is equalto 0. �2(�u) � 0 (5.14)Limit and bifurcation points where the path changes from stable into unstableare characterized by these points. Following criterion (5.12) in combination withequation (5.10) the potential energy is a proper minimum if the sti�ness matrixK is positive de�nite. In practice, the sti�ness matrix does not have any neg-ative roots on the diagonal of the factored matrix. Since in the path-followingmethod the sti�ness matrix needs to be factored each step, the stability can beevaluated by checking the condition of the factorized sti�ness matrix.Lyapunov's criterion is equivalent to the energy criterion, but since it alsorefers to the dynamic behavior of the structure, it is worth while mentioning it.Consider a deformed structure at rest that is disturbed by a small perturbation.If the incipient motion grows without bounds, independent how small the initialdisturbances are taken, the equilibrium is declared unstable. When for thesesmall perturbations the motion remains bounded or damped, the equilibriumis called stable. Apparently, when an equilibrium is unstable it will move awayfrom this equilibrium coupled with large accelerations and velocities. This be-havior can be simulated with the transient algorithm developed in the previouschapter.5.2 The Transient SolutionWhen the solutions of the path in the static domain have become unstable, aftercrossing a limit- or bifurcation point, the analysis must be continued using thetransient solver in order to calculate the jump to a new stable path. One of themost important aspects is the correct initialization of the transient process. Thechoice of the initial conditions determine the direction in which the structurewill jump. Control parameters such as the time step h and the amount ofdamping are other important features that make sure that the jump ends atthe correct stable path in a proper way.5.2.1 Initial ValuesThe critical points where mode-jumping occurs are either limit points or unsta-ble bifurcation points, where the equilibrium on the path changes from stableto unstable. In �gure (5.9) this transition from the stable trajectory occurs atpoint A. The unstable path is denoted with a dashed line.In principle, these critical points are not known beforehand. A limit pointis marked by a maximum in the load displacement curve and a change in thecondition of the sti�ness matrix K. Bifurcation points can only be identi�edby evaluating the sti�ness matrix at every step. In the continuing the mode-jumping of limit points will be discussed, since in practice, pure bifurcations
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Figure 5.9: The mode-jumping processare a rarity and can always be changed into a limit point singularity by addingan imperfection to the model.The transient process is a�ected by three variables, i.e. the initial conditionsu0 and _u0 and the load factor � that is now time dependent and determinesthe value of either external loads f ext or the prescribed displacements.The �rst and most natural way to start the transient process is by usingthe last stable equilibrium on the primary path (us; �s). The subscript s meansthat this is a solution of the quasi-static equation. The initial displacement ofthe transient process at t = t0 can be chosen equal to the last stable solution:ud(t0) = us. The load factor can be prescribed in such a way that it starts atthe level �s at t = t0 and increases monotonously to a level �d according to�(t) = �s + d�dt t. In this case d�dt is the increase of the load-factor per unit oftime. Within the time domain in which the complete jump must proceed, theload-factor must exceed the limit load of this stable path.�d(t) > �limit t < tend (5.15)Since the jump will start from a static equilibrium, the initial velocity _u0 canbe chosen equal to 0.As long as the load factor is smaller than �lim, the transient analysis willbehave like a quasi static analysis: the velocities and accelerations remain small.As soon as � exceeds the limit load, the character of the process becomes moreand more dynamic. The kinetic energy that was almost equal to zero increasesand the structure moves away from the static branch rapidly. When the newstable path has been reached, the kinetic energy will dissipate and the structure



5.2. THE TRANSIENT SOLUTION 109will come at rest again. From here the continuation analysis can be restarted.The method described above is undoubtedly the best way to simulate thejump, but not the most convenient one. Since the exact value of the limit load�lim is not known, it can take a long time before the load factor passes the limitvalue and the actual jump begins. The calculations that have been done so farcan be considered wasted. Up to the limit point, the much faster continuationmethod can be used instead.A jump can also be initiated using the Lyapunov's criterion. This criterionstates that when an unstable solution is perturbated, the jump will be initiated.It can be shown that it is not possible to use an unstable static equilibrium tostart the transient calculations. However, the perturbation of a stable equilib-rium into the unstable area will give the same results. Again the last stableequilibrium (us; �s) will be used. By changing the load-factor �, this equilib-rium can be perturbed into the unstable area. The only condition is that the�d(t) is signi�cantly larger than the limit load �lim. In principle �d(t) can bekept constant during the jump. This method will produce results very fast.Immediately after starting the transient calculation, the dynamic behavior (theincrease of kinetic energy) will be visible.In some cases, especially in shell structures, the limit or bifurcation pointhappens to be a knot in which more second branches are involved. In themethods above the direction in which the jump proceeds (which second branchwill be followed) is completely arbitrary. In order to have full control in whichdirection the structure will jump, the need for an improved method arose.The buckling modes and corresponding critical loads can be calculated byan eigenvalue analysis. In B2000 this analysis is implemented in the macro-processor B2BUCK. This processor determines the buckling eigenvalues accordingto the undeformed state, u = 0. It is better to perform this analysis using thelast stable solution us as a starting point4 One of the obtained eigenmodes ajcan be used to de�ne the initial displacement of the transient analysis. Sincethe eigenmodes or often presented as normalized vectors, the must be multipliedby a scaling parameter � �rst. The initial displacement can thus be written asud(t0) = us + �a (5.16)The external load parameter �d(t) must be higher than the corresponding eigen-value �j . In order to give the jump an additional boost in the right direction itis possible to use initial velocities. The velocities are also based on the eigenvec-tor of the corresponding buckling mode, say _ud(t0) = �a where � is a arbitrarysmall number.Because the static equilibrium is perturbed, inertia and damping forces(accelerations and velocities) are needed to restore the dynamic equilibrium.This will start the jump motion. Since the deformation on the current pathcorresponding the load factor �d is not stable, the structure will move to another(second) stable path with the equilibrium (u2s;�d), �gure 5.9.4This solution procedure used to be a part of the B2CONT package. For reasons not knownby the author, this feature has disappeared from the code. Eigenvalues analyses can only bedone using a undeformed structure.



110 5. THE MODE-JUMPING PHENOMENONud(t0) _ud(t0) �(t)Classical method us 0 �s + �;t tFast method us 0 �s +��Improved fast method us + �a �a �s +��Table 5.1: Initial conditions and load factor for initiation of mode jump5.2.2 DampingIn principle, the transient analysis of a structure is undamped when the Rayleighcoe�cients � and � are equal to zero. Of course there is a small amount ofnumerical damping introduced by Park's method, but this amount can be ne-glected, especially when the time-step is small enough. As a consequence ofthis, the total kinetic energy during the transition will hardly decay. It cantake an enormous amount of time steps before the iteration comes to a restin the new stable branch. Furthermore, the dynamic response can become soviolate, that the �rst stable branch can be missed and the structure reaches anext stable path. This phenomenon is called overshooting.So far, damping must be simulated using Rayleigh damping. In order toobtain a realistic damping behavior of the structure, the constants � and �should be chosen so that the damping is under-damped. Recalling equation(4.28).�+ �!2l = 2!l�l (5.17)This equation describes the connection between the eigenfrequency and damp-ing ratio of the structure and the Rayleigh constants. Unfortunately, the twoconstants cannot be determined from this single equation. An additional re-lation must be formulated �rst. There is a number of methods to do so, 2 ofthem will be discussed here.The best way to determine � and � is to describe the relation using anothereigenfrequency, for instance, the second dominant frequency. This results inthe following system of 2 equations.�+ �!21 = 2!1�1�+ �!22 = 2!2�2 (5.18)In principle, two di�erent damping ratio's �1 and �2 can be inserted in thisequation. The best results are obtained when the damping ratio to the �rsteigenfrequency is smaller than the damping ratio of the second one, i.e. �1 < �2,but two identical ratio's can be used as well, �1 = �2. In this case, the ratio'sare � = 2�!1!2!1 + !2 ; � = 2�!1 + !2 (5.19)Another way to introduce a second equation is the demand that the inuenceof both the mass and the sti�ness matrix to the damping must be equal, which



5.2. THE TRANSIENT SOLUTION 111results in the following system.�+ �!2 = 2!��� �!2 = 0 (5.20)The answer to this system can be calculated immediately.� = �! � = �! (5.21)The natural frequencies of a structure can be calculated using a linear dy-namic eigenvalue analysis method, which has already been implemented in theB2000 platform as the macro-processor B2LIN [16]. This analysis can be donebefore the buckling analysis, on the undeformed structure. Appropriate valuesfor the damping constant � to simulate an under-damped vibration are in therange of 0:05 < � < 0:2.5.2.3 The Second Stable PathIt can be shown [28] that when damping is applied to the model, the kineticenergy will decrease during the transient process. When the kinetic energyapproaches zero, this is an indication that the transient analysis has reacheda new static stable path. When the kinetic energy T satis�es the followingconditionT < �T (5.22)the structure can said to be in rest. In reality, the structure is vibrating aroundthe static solution of the second branch, point B in �gure (5.9). The choiceof the right �T is an enigma. As a rule of thumb this small constant can bechosen as �T = 10�3Tmax where Tmax is the maximum kinetic energy duringthe transition, most likely reached after a few steps in the integration process.5.2.4 Restarting the Continuation MethodThe con�guration of the `construction at rest' obtained by the transient analysiscan be used to restart the continuation analysis in order to calculate the nextstable path. Since the transient analysis was stopped when the kinetic energywas not exactly equal to zero, there will be small velocities and accelerations.The displacement vector at this time udr is therefore not a static solution.The next aim is to �nd the corresponding static solution on the secondpath u2s. A good restart relies on two things. First the dynamic solution urdmust be close enough to the quasi-static path to serve as a predictor in thecontinuation analysis. When the dynamic solution is not in the domain ofconvergence around the static solution u2s, convergence can not be guaranteed.Secondly, the static solution must be stable, that is the sti�ness matrix K(u2s)must be positive de�nite.As soon as the �rst point on the secondary path is calculated, the remainderof the path can be followed using the normal continuation routine. When thispath becomes instable, the exercise must be repeated from the beginning inorder to reach the third path.



112 5. THE MODE-JUMPING PHENOMENON5.3 ClosureIn this chapter, a strategy to calculate the post buckling behavior of struc-tures is presented. The strategy is completely based on two solution methods.The quasi-static continuation method is used to calculate the behavior of thestructure in static stable conditions. The sudden, dynamic jump towards anew static stable equilibrium is calculated with a transient solution method.This last method is based on the nonlinear equations of motion which is themost accurate and complete model for the description of mechanical responseof structures.In principle, the complete behavior of the structure under loading can becalculated using the transient method instead of switching from the continu-ation method to the transient method and back. When the load factor � isincreased very slowly in the time domain, the transient method approaches thecontinuation method. This way, it is impossible to �nd unstable solutions: thetransient algorithm will automatically jump to the new `stable' path and con-tinue its analysis. The post-buckling behavior of a structure will be calculatedmore naturally.In spite of these advantages, this `all-transient' method is not recommendedto calculate post-buckling behavior. A number of reasons can be presented forthe bene�t of the `mixed method'.Compared to the transient method, the path-following method (quasi-staticsolution) is much faster for the computation of static equilibrium deformations.It is possible to walk down the path taking large steps. Regardless of the stepsize, the calculated path is always exact. Unfortunately it is impossible to takethese large steps when the path is calculated using the transient method. Themost important reason is that the load-factor � is a function of time. Theprogress of time is denoted by the constant step-size h. During the process, the rate of increase of the load factor cannot easily be changed. When theload-factor as a function of time increases too fast, some uncontrollable dy-namic phenomena such as overshooting can occur. When the time-step h is toolarge, the results become less accurate due to an enormous amount of numericaldamping.It is rather di�cult to create a �nite element model with loading patternsand initial conditions, that will simulate the exact dynamic behavior. Smalldisturbances in the initial conditions or loading will result in rather large devi-ations, certainly when many time-steps are required to calculate the dynamicresponse accurately. The transient method allows the user to simulate dynamicbehavior rather than analyze the buckling properties of the structure. The re-sults obtained with the quasi-static method may be not very close to reality,they tell a lot about the structures buckling behavior in general. Both methodscan be very useful but their capabilities may not be overestimated.



6Numerical Examples
The performances of the beam elements and the transient iteration methoddeveloped in the previous chapters are shown using a number of testcases. Mostof them are obtained from the papers which have been used in the derivationsof the theories. Some of them can be denoted classic: they appear in almostevery publication about this subject and are therefore essential in a numericalevaluation.Most of the examples, except from the enormous mode-jumping analyses,are rather simple. Recalculation of the results only takes a few minutes. Forthis reason, the can perfectly be used to validate the elements and the processorin the future, when new features have been added. They will be enclosed in thedatabase of testcases in B2TEST macro-processor.6.1 Nonlinear Beam ElementsSome speci�c element types can be validated with a number of prescribed testseries. For example, the MacNeal-Harder series contains a number of tests tovalidate nonlinear shell elements and their drill rotation problems in particu-lar. Unfortunately there are no such tests for nonlinear beam elements. Thetestcases presented in this section are made up by the author or collected fromvarious articles and cover almost all applications of geometrically nonlinearbeam elements.First a set of linear deection tests is executed to test the reliability ofthe elements in linear analyses. The tip displacements of a number of beamstructures is compared to analytical solutions, the existing linear beam elementB2.EP and the Rebel shell element Q4N.REBEL. Linear dynamic eigenvalues cal-culations are done as well.The performances of the element in nonlinear analysis are tested with thecontinuation routine B2CONT and the linear buckling analysis processor B2BUCK.The capacities in buckling and bifurcation point analysis have extra attention.The results are compared to the beams' slenderness ratios in order to �nd out
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uvF Ab = 20 mm2Aa = 40 mm2b �

Ib = 250 mm4Ia = 500 mm4Lb = 50 mmLa = 100 mm
aFigure 6.1: Plane beam structure for linear deection testRoark B2 B2.EP B2.EP+ B2.NL Q4N.REBELu 3.346 3.348 3.346 3.346 3.333 3.336v -2.500 -2.500 -2.500 -2.500 2.500 -2.520� -0.075 -0.075 -0.075 -0.075 -0.075 -0.075Table 6.1: Deections and rotation of plane beam structure under discrete forcein which regions of slenderness the beams are still reliable.6.1.1 Linear Deection TestIn the �rst test, a plane beam structure is presented, 6.1. The two bars (a andb) have di�erent lengths and cross sectional variables. The structure is made ofan isotropic elastic material with Young's modulus E = 2:0 � 104 N=mm2 andPoisson's ratio � = 0:3. At one end, the beam is fully clamped, at the otherend a nodal force is applied with a magnitude of 100 N . The model is madeof 6 beam elements, each of them 25 mm long. All available beam elements,including the linear beam element B2 have been tested in this case. In orderto calculate the tip displacements considering shear deformation, this simplebeam structure is also modeled with Q4N.REBEL shell elements.The deections u and v of the tip, as well as its rotation � can be calculatedanalytically with the `slope and deection formulas for straight elastic beams'(the vergeet-me-nietjes in Dutch) as presented in Roark's Formulas for Stress& Strain [35]. The analytical solutions and the numerical results can be foundin table 6.1.It can be seen that the new plane beam elements B2.EP and B2.EP+ perfectlyprescribe the displacements and tip deections. This is not surprising, since theanalytical beam deection formulas are based on the principle that excludesshear deformation, in this perspective equal to the Bernoulli hypothesis. Thisis also the reason that the u-deection of the 3-dimensional nonlinear beamB2.NL does not match the analytical estimation. The Bernoulli hypothesis isnot used in the development of this element which makes it somewhat sti�er forlateral displacements. Analytical estimations of the deections of such beamsincluding shear deformations are not available so that an alternative way to
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Figure 6.2: Three dimensional beam structure for linear deection testRoark B2 B2.NLu 7.650 7.649 7.613v -1.250 -1.250 -1.250w -1.875 -1.875 -1.875�x 0.000 0.000 0.000�y 0.000 0.000 0.082�z -0.038 -0.038 -0.038Table 6.2: Deections and rotation of 2-dimensional beam structure under dis-crete forcecheck the validity of the B2.NL element must be sought. Shear deformation isalso included in the Q4N.REBEL shell element and is the best element to comparethe beam element with. It is therefore not surprising that the u deections ofboth elements are almost identical.The out-of-plane deformations of the 3-dimensional beam element B2.NL istested with an extended version of the previous case. Due to the addition ofan out-of-plane bar c the torsional sti�ness of the beams participates in thetip-deection as well, as can be seen in �gure 6.2. The material parametersE and � are the same as in the previous case. The moment of gyration J isassumed to be equal to two times the moment of inertia, J = 2I. The analyticalsolutions and the numerical results can be found in table 6.2.Again, the deections of the 3-dimensional nonlinear beam element are quitegood compared to the analytical results and the linear element B2, Apart fromthe previously mentioned deviation due to shear deformation, the results arealmost identical.The performances of the mass description is tested by a linear dynamicaleigenvalue analysis. The �rst three eigenfrequencies of both frames are calcu-lated with the macro-processor B2LIN. The mass density of the material in bothframes is assumed to be � = 0:001 kg=mm3. There are no numerical resultsavailable so that the results can only be compared to the existing linear beam



116 6. NUMERICAL EXAMPLESfreq. B2 B2[LD] B2.EP B2.EP+ B2.NL Q4.REBEL2D model 1 0.5923 0.590 0.594 0.594 0.591 0.5942 2.2472 2.224 2.280 2.280 2.235 2.2453 5.2676 5.221 5.570 5.570 5.285 5.3613D model 1 0.102 0.101 - - 0.1012 -2 0.107 0.106 - - 0.1063 -3 0.234 0.231 - - 0.2359 -Table 6.3: The �rst three eigenfrequencies [Hz] of the 2 beam models usingdi�erent beam elements
l

F
y;w x; uM

Figure 6.3: Cantilever beam under both a transverse load and a bending mo-mentelement B2. This element is equipped with two descriptions for the mass: aconsistent mass matrix and a lumped diagonal one. Both are used in this test.Furthermore, new models have been made. Instead of the somewhat long ele-ments (25 mm), smaller elements (10 mm) are used instead. The result of theanalyses are shown in table 6.3. It is not surprising that the performances ofthe reduced lumped diagonal mass matrix are somewhat behind. The eigenfre-quencies of all 4 elements (B2.EP,B2.EP+,B2.NL and Q4N.REBEL) in most casetoo high compared to the eigenfrequencies of the old B2 element. This is aresult of the absence of mass inertia. The mass is not divided properly over allthe degrees of freedom.6.1.2 Large Deection of a Cantilever BeamIn this simple example, the general quasi-static nonlinear behavior of the beamelements in large deformations is tested. The test is obtained from a paper byEriksson and Pacoste [5]. A cantilever beam as shown in �gure 6.3 is loaded atthe tip with either a transverse load or a bending moment. The length of thebeam is l = 100, the beam cross section properties are A = 0:6 and I = 0:018.Young's modulus is E = 1:0 � 108. The beam is modeled using 4 beam elementsof uniform length. On the left-hand-side, all displacements and rotations arelocked. The applied unit force is 1000, the unit moment 10000. The initial loadfactor � which is used to start the continuation process is 0:001 in both cases.The �gures 6.4 and 6.5 show the tip deection of the beam under force and
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Figure 6.4: Tip displacements u and w of the cantilever beam under transverseload.moment load respectively.The performances of the two 2-dimensional beam elements B2.EP and B2.EP+are almost identical. The results are the same as presented in literature. Itcan be concluded that the error due to the simpli�cation of the curvature isvery small in this case. The choice to model the curvature this way in the3-dimensional beam element is hence justi�ed.The 3-dimensional element B2.NL is also subjected to this test. Unfortu-nately due to the problems sketched in the section 3.7, the results were ratherpoor. Just the almost linear part of the path could be calculated, up to aload-factor � = 0:05.6.1.3 Pure Bending of a Cantilever Beam under a Moment LoadA classical example to prove the beam's ability to rotate over 180� is the follow-ing case obtained from an article by Simo and Vu-Quoc [29]. A straight beam ofunit length L = 1 and bending sti�ness EI = 2 is subjected to a concentratedend moment M , �gure 6.6. The beam's cross section is, in this academic case,in�nitely large, say 1000. The model is made of 20 beam elements of uniformlength. The exact analytical solution to this problem is known. The beam iscompletely rolled up when the applied moment is 4�; when the applied momentis 8� the beam is rolled up twice. The 2-dimensional beam element with Tim-oshenko curvature (B2.EP+) is subjected to this test. The results are shown in�gure 6.7.It can be seen that the results matches the analytical solution quite well,except for the last part, where �tip > 5:0 rad. This is a result of the simpli�edelastic rotation �e in the strain energy expression, equation (2.42). The simpli-�cation holds for small angles �e. In this case, the cantilever beam is uniformlybent and the elastic rotation of each element is equal to �e � 5:0=20 = 0:25 radwhich is equal to 14�. This angle is indeed to large to be evaluated by a Taylor
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Figure 6.5: Tip displacements u and w of the cantilever beam under momentload.
M = 4� l M = 0

M = 2�

Figure 6.6: Cantilever beam subjected to an extreme tip momentexpansion series of the �rst degree. The same case is also calculated with 10elements of uniform length. Unfortunately it was not possible to roll up thebeam completely.6.1.4 Euler Buckling at Di�erent SlendernessesBuckling behavior of beams is one of the classical mechanic subjects. A �rstanalytical solution has been found by Euler. In his derivation the beam isassumed to be very slender, i.e. the radius of gyration r = pI=A over thelength of the beam l is small, approaches 0. Since the beam developed in thisthesis is assumed to be slender as well, it must be can be compared to Euler'stheories. In this case, the buckling sti�nesses are compared to the slendernessof the beam in order to check in which regions the results are reliable.
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Figure 6.7: Tip rotation of cantilever beam under extreme momentA Hinged Euler StrutA cantilever beam shown in �gure 6.8 is investigated. The length l is 100, itsmoment of inertia I = 0:018. The cross section A can be varied. The beam ismade of an isotropic material with Young's modulus E = 108. A compressiveforce N is applied at the end of the beam. Using Euler formula, the criticalload can be calculated byNcr = �2EIl2In this case the critical load will be Ncr = 1776:53. NlFigure 6.8: A simply supported Euler strutThe �nite element model of the beam is made of 10 elements of equal length.The displacement in x- and y-direction of the unloaded end are locked, as wellas the displacement in y-direction of the loaded end. In order to avoid rigidbody modes, the rotation of the midpoint of the beam is locked too.The critical loads are calculated using the B2000 buckling analysis macro-processor (B2BUCK). Both 2-dimensional elements are used. Di�erent values forthe cross section area are used to obtain di�erent slendernesses.A Clamped Euler StrutIn this case, both ends of the beam are clamped, �gure 6.9. All dimensionsand material constants of the strut are equal except for the length, which has



120 6. NUMERICAL EXAMPLESI A r=l B2.EP B2.EP+0.018 0.0018 0.0316 1827.05 1790.690.018 0.018 0.01 1783.25 1779.720.018 0.18 0.00316 1777.21 1776.860.018 1.8 1.0�10�4 1776.61 1776.570.018 18 3.16�10�4 1776.56 1776.550.018 180 1.0�10�5 1776.55 1776.55Table 6.4: Euler loads for di�erent slendernesses (simply supported beam)I A r=l B2.EP B2.EP+0.018 0.0018 0.0316 1843.33 1790.690.018 0.018 0.01 1783.04 1780.190.018 0.18 0.00316 1777.57 1777.220.018 1.8 1.0�10�4 1776.97 1776.930.018 18 3.16�10�4 1776.91 1776.910.018 180 1.0�10�5 1776.91 1776.91Table 6.5: Euler loads for di�erent slendernesses (clamped beam)been set to 2l = 200. The critical load of a clamped Euler strut is equal to thecritical load of a simply supported beam with half the length, so Ncr = 1776:53.Again, the �nite element model consists of 10 elements. Again the critical loads
2l N

Figure 6.9: A clamped Euler strutare calculated for varying radii of gyration.The most spectacular result of these examples is that the performancesof the Timoshenko beam are signi�cantly better, even when the beam is lessslender. This can be explained as follows. When the beam is slender, the crosssectional area is large compared to the moment of inertia. The correspondingaxial strain is then small compared to the curvature. When the beam is notslender, the area is small compared to moment of inertia and the contributionof the axial strain is large. In the simpli�ed beam, the axial strain term inthe curvature is neglected. In case of slender beams this is no problem. Whenthis is not the case, the error in the second order term (the curvature) is toolarge and the results are unreliable. Nevertheless, when the slenderness ratio issmaller than 1 � 10�3, both beams gives satisfying results.The analysis is also done with the 3-dimensional element, but without a
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l = 120 mmI = 2 mm4
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A = 6 mm2F
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Figure 6.10: Geometry of a hinged right-angled framesatisfying result.6.1.5 Buckling of a Hinged Right-angle Frame under a Fixed LoadA more complicated example which combines both Euler buckling and snap-through can be found in Simo-VuQuoc [30]. A hinged frame as drawn in �gure6.10 is subjected to a nodal force at 1=6th of the corner. The load is conserva-tive, i.e. the direction of its work-line does not change during the deformationprocess. The frame is made of isotropic material E = 7:2 � 106 N=mm2. Theframe is modeled using 12 B2.EP+ beam elements of equal length, 6 elementsin each leg. The displacements in the hinges are locked; the rotations are free.The slenderness of the legs is r=l = 2:0 � 10�3 which is near the upper boundarywhich has been de�ned in the previous example.The load displacement curves of the loaded point is shown in �gure 6.11.The results are equal to those found in literature.6.2 Linear Transient AnalysisThe linear part of the transient solver B2TRANS can be tested easily. Analyt-ical solutions are available in many cases. Furthermore, the responses can becompared to the results of the eigenvalue processor B2LIN or the explicit timeintegration routine B2ETA.6.2.1 A Flat Plate with In-plane Initial VelocitiesThe following example which is obtained from a memorandum by P. Volgers [33].It considers a at strip that vibrates in the axial direction as a consequenceof an increasing initial in-plane velocity. The dimensions and the boundary
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Figure 6.11: Horizontal and vertical displacement of hinged frame under con-servative load
vtip vtip = 1:2t = 1:0b = 1:0

l b
l = 50:0

Figure 6.12: Model descriptionconditions are given in �gure 6.12. The strip is made of an isotropic materialwith E = 1 � 104 and � = 0:0. The mass-density is � = 0:01. There are noexternal forces applied to the beam. The initial displacement is equal to zero,the axial initial velocity is linearly increasing from zero at the clamped root tovtip at the tip.Since this case is fully linear, the model is made of 10 Stanley shell elementsQ4.ST. Furthermore the mass is modeled using a consistent mass representation.The response is calculated using all 4 LMS schemes that have been implementedin the B2TRANSmacro-processor. The time-step that has been used is h = 0:01 s.The results are compared to a calculation with the explicit time integrationmacro-processor B2ETA. In this analysis, the strip is modeled with 10 H8.ETA 8node volume elements.It can be seen that results obtained with the trapezoidal rule matches theexplicit results best. There is no numerical damping and hardly any phase shift.Park's LMS scheme su�ers from a little amount of damping, just as Gear's 2-step method. Gear's 3-step method becomes unstable after a number 50 steps.The response is then completely wrong.In order to test the consequences of the numerical damping of Park's LMS
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Figure 6.13: In plane tip displacement of a at clamped plate (B2ETA)scheme, the same exercise is repeated for a number of di�erent time-steps.As can be seen in �gure 6.15, the numerical damping and the p[period shiftincreases with increasing time-step. This was of course expected.6.2.2 Eigenfrequencies of a Helicopter RotorNo matter how a structure is loaded, when it is released, it will always oscillatein one (or more) of its eigenfrequencies. By decomposing the response of astructure, it is possible to �nd these eigenfrequencies. This principle will beused to test the reliability of the transient processor B2TRANS.The following test-case is obtained from [24]. A scale model of a helicopterrotor is tested in a windtunnel. In order to validate the experimental results,the eigenfrequencies are calculated with the linear processor B2LIN. A simple�nite element model as shown in �gure 6.16 is used in this analysis. The rotorblades are 1:7 m long and made of an isotropic material. They are connectedto the shaft by a hinge. The rigid shaft is fully clamped at the free end. Aset of springs with variable sti�ness is attached to the blades. By varying thesti�ness of these springs, the eigenfrequencies of the rotor can be inuenced.In this case, the blades are modeled with the new B2.NL beam elements, thesprings (which have no mass) by R2 rod elements. The blades can only moveand deform in the rotor-plane. At a certain moment the Young's moduli of theblades and the springs are E = 1 �1011 N=mm2 and E = 1 �105 N=mm2 respec-tively. The �rst two axi-symmetric modes with the corresponding frequenciesare shown in �gure 6.17.The results obtained by the linear eigenvalue analysis are simulated by theB2TRANS processor. The tips of all the blades are loaded by a pulsating forcein order to generate an axi-symmetric oscillation. The period that is used isT = 0:02412 s, which corresponds to the second axi-symmetric eigenfrequency.
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Figure 6.14: In plane tip displacement of a at clamped plate with initialvelocities.The loading is continued for 3 periods, i.e. at t = 0:07236 s the forces arereleased. From this point, the blades are free to vibrate in their eigenmodes.The lateral displacement of one of the tips as a function of time is shownin �gure 6.18. As expected, the response of the blades can be decomposedin the 2 axi-symmetric eigenfrequencies. The large sine wave belongs to the�rst mode (T = 0:538 s), the small superposed sine wave to the second mode(T = 0:02412 s). It may be concluded that the transient processor is workingproperly and, more important, produces physical relevant results.6.3 Nonlinear Transient AnalysisThe nonlinear transient macro-processor B2TRANS is capable to perform calcula-tions with all nonlinear structural elements available within the B2000 package.Many of these elements, for example the C2 cable element and Rebel's shellelements do not have a proper description of the mass matrix. In order tobe able to use these elements, a simple mass representation for these elementsis implemented. This is done by using the description of lumped masses aspresented in section 3.6.6.3.1 Stretched Cable Submitted to Transverse LoadingThe following example is designed to test the accuracy of the nonlinear tran-sient solver and is obtained from [8]. It consists of a cable of span L which isstretched with an initial tension �0 between 2 supports, with no sag and noinitial transverse load, �gure 6.19. The dynamic loading consists of a linearlyincreasing distributed transverse load with the function f(t) = f0t. The cable



6.3. NONLINEAR TRANSIENT ANALYSIS 125

-0.06-0.04-0.020
0.020.04

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5Displacement
�

time [s] h = 0:005h = 0:01h = 0:02B2ETAFigure 6.15: In plane tip displacement of the plate calculated with di�erentinitial time steps.
���
���
���

���
���
���

Figure 6.16: Model of a helicopter rotoris considered to be fully elastic during the calculations and has a rigidity EA,The mass per unit length is �A.The dynamic motion is checked in the midspan node u = y(L=2). Themodel is made of 20 C2 cable elements as implemented in B2000 and improvedby P. Smith. The response is calculated using 3 di�erent initial time steps, i.e.1 ms; 2 ms and 4 ms respectively. Park's three-step method is used as the LMSscheme.An analytical, linear solution for this problem can be deduced using thestring theory. In the �rst phase of the deformation (to t = 0:03 s) this linearsolution describes the nonlinear response quite well. However from t = 0:032 sthe linear and nonlinear solutions di�er rapidly. The nonlinear solution startsto oscillate, with a constant period.A number of conclusions can be drawn from the response of the cable, �gure6.20. First, all calculations remain numerically stable. Even the analysis withthe time-step h = 4 ms produces converged solutions. Second, the numericaldamping as well as the phase shift is proportional to the time-step. The period
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(a) First mode, f = 1:86 Hz (b) Second mode, f = 41:46 HzFigure 6.17: Two axi-symmetric modes of a helicopter rotorof the vibration is approximately 30 ms as can be seen in the �gure. Theaccuracy of the 1 ms and the 2 ms cases rather high. The damping and phaseshift of the 4 ms case is somewhat large, which is not surprising since the ratioT=h is smaller than 10 in this case.6.3.2 Snap-through of a Cylindrical ShellIn order to test the feasibility of the transient solver in combination with non-linear shell elements, the following test case is presented [14]. Figure 6.21 showsthe geometry and boundary conditions of a curved panel. In the exact centera concentrated nodal force is applied with magnitude F . The time history ofthe load is shown in �gure 6.21a. The panel is made of an isotropic mate-rial. Young's modulus is E = 2 � 1011 N=m2; Poisson's ratio � = 0:25. Themass-density is � = 104 kg=m3.Just a quarter of the panel is modeled in order to save on computationcosts. Symmetric boundary conditions are applied to the cutting edges. Notethat doing so, only symmetric deformation modes can be found. The nodalforce, which is applied on the crossing of the two planes of symmetry, is dividedby 4 as well. The quarter of the panel is modeled using 5 � 5 and 10 � 10uniformly placed Q4N.REBEL shell elements. The mass is described with thereduced lumped formulation. The response of the panel is also calculated withthe STAGS package. The 4 node 410-shell elements are used to model the panel.In all cases an initial time-step of h = 1 ms is used. The response is calculatedup to t = 0:3 s.As can be seen from �gure (6.22) the response of the structure depends onthe number of elements that has been used. In the �rst part of the analysis,up to t = 0:1 s the responses of all three analyses are almost identical. The
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Figure 6.18: Displacement of one of the tips, axi-symmetric responsep0 p = p0t tpL = 20 m
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Figure 6.19: Stretched cable submitted to a transverse loading
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Figure 6.20: Displacement of the middle node divided by the string length l



128 6. NUMERICAL EXAMPLES

�

L = 5 mR = 5 m� = 60�h = 0:1 m
R

F(t)
Lh

2001601208040
F (t)

u

t[ms]100 200
Load Curve[MN ]

Figure 6.21: Panel geometry and prescribed load functionbehavior in the highly nonlinear part of the analysis, 0:14 < t < 0:18 dependson the number of elements that has been used. Both 5�5 and 10�10 meshes ofthe STAGS analyses give the same results (only the 5� 5 mesh is plotted here).In B2000 the accuracy increases with increasing numbers of elements. Theresponse of a 20�20 mesh (not printed either) approaches the STAGS solutions.In principle since both the transient solver and the mass matrices of B2000and STAGS are identical, this di�erence must be denoted to the quasi-staticperformances of the 2 elements. The Q4N.REBEL element is designed for thinshell structures. The ratio t=R (thickness over radius of curvature) must besmall. In this case however, this ratio is equal to 0:02, which is rather high.The performances of the element decrease at this ratio.The reduced lumped diagonal mass matrix is working properly. In the lastpart of the analysis, where the shell is oscillating around its new equilibrium,the response is determined by the mass properties. In this part, the globalcharacteristics of the solutions obtained by the STAGS and the B2000 calculationsare identical.6.4 Mode JumpingThe last series of tests discusses the calculations of mode jumps as describedin chapter 5. The presented structures are made of the 2-dimensional beamelement as well as Rebel's shell elements Q4N.REBEL.
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t [s] B2000 (10x10)B2000 (5x5)STAGS [t]Figure 6.22: Response of the panel as calculated with B2000 and STAGS6.4.1 A Plane Frame StructureConsider a beam structure as shown in �gure 6.23. The model is made of 32B2.EP+ beam elements of equal length. The nonlinear post-buckling behavior ofthe model has been determined using the B2000 continuation package B2CONT.Since there are two di�erent buckling phenomena involved in this example, thedisplacement in the load displacement plot is a combination of 2 displacements(u = u1 + u2), �gure 6.24. It is possible to jump from the �rst limit point tothe second stable branch. In order to determine the damping coe�cient � and� as well as the initial time step h a linear dynamic eigenvalue analysis usingB2LIN. The lowest circular eigenfrequency of the system is ! = 1:3434. Whena damping ratio � = 0:2 is used, the corresponding coe�cients are� = �! � 0:3 � = �! � 0:15 (6.1)As an initial time step h = 0:2 s is used.After 8 quasi-static steps the sti�ness matrix of the structure becomes sin-gular. This means that the equilibrium is unstable. The estimate limit loadis �lim = 3:3. From this point, with the last stable solution of step 7 as ini-tial displacement, the transient analysis is started. The corresponding constantload-factor is �d = 3:32. The transient processor B2TRANS is started. After ap-proximately 150 step, at t = 30 s, the kinetic energy has reached a value whichis almost 10�6 times the maximum kinetic energy, �gure 6.25. At this point thestructure is at rest and the analysis can be continued using the continuationroutine. The last dynamic solution ud and the load factor �d are used as theinitial value.After a large number of iterations, the kinetic energy was apparently stilltoo high, a new solution on the second, quasi-static stable path is obtained.From this point, the analysis can be continued without any problems.
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aFigure 6.23: Frame geometry and loading6.4.2 The Verolme PanelIn this example the buckling behavior of an initially undeformed panel is con-sidered. This particular panel was �rst used by Verolme [32] in his PhD. thesis.The shells is shown in �gure 6.27. It is made of 2024�T3 aluminum with thefollowing material constants. Young's modulus is E = 70MPa and the Poissonratio is 0:272. The mass density of material is � = 2700 kg=m3. The shell issimply supported at the edges II and IV (6.27a) and clamped at the other twoedges (6.27b). The panel is compressed with a prescribed end shortening atedge I, the unit displacement is � = 2:58 mmThe FEM model is built with Rebel-type 4 node elements (Q4N.REBEL) in a20�20 mesh. The mass properties of the panel are modeled with the mass ma-trix of the 4 node Stanley element. In order to estimate the damping coe�cients� and � the fundamental eigenfrequencies are calculated. The fundamental cir-cular frequency is ! = 1469:21. The guessed values for the Rayleigh coe�cientsare � � 150 � � 6 � 10�5The period of this vibration is equal to 1=! = 6 �10�4 s. As a rule of thumb thenumerical damping remains small when the time-step is 1=10th of the vibrationperiod. In this particular case an initial time-step h = 5 � 10�5 s is chosen.The pre-buckling part is calculated with the path following technique (B2CONT).The initial load parameter � is set to 0:01. The unstable path is yet reachedat the seventh step when � = 0:3593. The last stable equilibrium was found instep 6 at � = 0:315. The load of the bifurcation point of this shell is somewherebetween these two load factors. The jump is started from the stable equilibriumwith a constant load factor which is higher than the limit-load factor. In thiscase, to speed up the analysis, a rather high load factor is chosen, �d = 0:375.
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(a) Pre-buckling path, � = 0:315 (b) Mode jump, t = 2:45 ms

(c) Mode jump, t = 7:45 ms (d) Second stable branch, � = 0:615Figure 6.31: Deformations in z-direction of the Verolme panel during pre-buckling and mode-jump analysis (ampli�cation 4x)
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7Conclusions andRecommendations
The main goal of this research has been the implementation of a set of nonlinearbeam elements and a transient solution algorithm in order to be able to performmode-jumping simulations in B2000. Gradually, a second goal has been de�ned.The beam elements and the time integration method must be developed in suchway, that they �t in the B2000 environment perfectly and that they can beused in other �elds of computational mechanics. In practice, this implies thatthe beam elements must be available for other analyses (e.g. B2LIN, B2BUCKand B2CONT), the transient processor B2TRANS must be able to handle otherelements rather than the new beam elements. Furthermore, the source codemust be written in such way that other users can immediately survey the codeand add new developments.Theoretical formulationAbove all things, the mode-jumping problem is a post-buckling phenomenon.The beam elements are therefore based on an engineering beam model. Theperformances of this theory are claimed to be excellent in the post-bucklingregions, as opposed to traditional models like for example the Lagrange-Greendescription.In order to get insight in the development of �nite elements, �rst a set of 2-dimensional beams has been developed and implemented. The beams are basedon papers by Eriksson and Pacoste [5, 6]. The strain description is based onReissner's theories. Two di�erent models for the curvature are implemented. Inthe most complex element a Timoshenko description is used, the other elementhas got a simpli�ed description for the curvature. Furthermore, the Bernoullihypothesis is applied in order to prevent shear locking.The experiences with the 2-dimensional beam element are used in the de-velopment of a 3-dimensional beam element. This element is based on papersby Simo et al. [29, 30] and is also an engineering element. The curvature is



138 7. CONCLUSIONS AND RECOMMENDATIONSdescribed by the simpli�ed expression. Apart from the addition of an out-of-plane direction and the corresponding shear, bending and torsion modes, aformulation for the �nite 3-dimensional rotations is derived. In this case, dueto the complex formulation of this rotation tensor, the Bernoulli hypothesis isnot applied.All three elements have got a simpli�ed formulation for the mass, a so-calledreduced lumped mass description. The total mass of the element is divided overits nodes; the rotational masses (inertia) are equal to zero.The theoretical formulations are restricted in the following ways.� The 2-dimensional beam elements are restricted in the pure bendingmode.Due to the Taylor expansion of the elastic rotation terms, accuracy is guar-anteed for pure elastic bending where � < 0:3 rad � 17�. The estimatederror of the rotation is of the order O(�3).� The Bernoulli hypothesis is applied to the 2-dimensional beam elements.As a result of this, the bending sti�ness of these elements is somewhatsmaller. In linear static and buckling analyses, snap buckling in particular,the result will be somewhat conservative, which is of course not a severeproblem.� In the description of the rotations in the 3 dimensional beam, a Rodriguestype formulation is used instead of the original rotation formulae. Un-fortunately, this description becomes singular when the total rotation ofthe beam is larger than � rad. Quaternions can be used to solve thisproblem. However, another description for the �nite rotation tensor, suchas the one used by G. Rebel in his shell elements [23] is a better option,but slightly more complicated to implement.The transient solver B2TRANS is based on an implicit time integration method.In general, the best choice of an integration method depends on the charac-teristics of the di�erential equation. In this case, the ODE is a sti� equation:there is a enormous di�erence between the lowest (base) eigenfrequencies andthe higher frequencies. The higher frequencies are less important and needto be �ltered out. Linear multi-step methods (LMS) as proposed by Gear [7]have the ability to ignore these higher frequencies, without loosing numericalstability. Unfortunately, these methods su�er from numerical distortion or un-stable bahavior. Park's integration scheme [20, 21] is based on Gear's methods,but is said to be unconditionally stable in combination with small numericaldistortion.A good alternative for the LMS methods is the trapezoidal rule. Thismethod produces no numerical damping at all. Unfortunately, it cannot beused to integrate nonlinear equations. Due to the altering eigenfrequencies, itcan become unstable. Nevertheless, the method is extremely suitable for linearequations. Park's method is preferred when the analysis is nonlinear.Most elements that are available does not have a description for the damp-ing. An empirical formulation, the Rayleigh damping, is used instead. The



139damping is supposed to be a combination of the mass and the sti�ness matrix.Physically speaking, this model is not correct. However, in the simulation ofmode-jumps it is a useful alternative.Due to a number of assumptions, there are some restrictions to the analyti-cal derivation of the transient algorithm.� With the construction of the history vectors hn no attention is paid to thefact that the displacement vector u and the auxiliary vector v containsrotational terms. In case of large, �nite rotations, these terms cannot beadded as `ordinary' vector components: the rotation tensor for compoundrotations must be used instead. As a result of this, the correctness of themethod cannot be guaranteed for large rotations, � > 1 rad.� The mass matrix is assumed to be linear. However, when large rotationsoccurs, the inertia terms of the matrix should change. The results canthan be distorted.Numerical ImplementationThe beam elements are implemented in the B2000 package as two di�erentelements, B2.EP and B2.NL. The �rst one contains both 2-dimensional beamelements. With an additional ag NG, the desired curvature model can bechosen. When NG is equal to 1, the simpli�ed curvature model is used, whenNG=2 (default) the full Timoshenko curvature is assumed. This last element isdenoted as B2.EP+. Since the element is of academic interest and not meantfor `commercial' purposes, there is no attention paid to the development of a 2-dimensional space in which the elements can be used correctly. The beam mustbe used in an ordinary 3-dimensional environment instead, but can only besituated in the xy plane. All out-of-plane displacements and rotations (z,�x,�y)must be locked.The 3-dimensional beam element is also implemented as a two node elementcalled B2.NL. The three node alternative (B3.NL) is in preparation. Unfortu-nately, the element does not work properly in nonlinear analysis. All axialdeformations (strain and torsion) are described correctly. Furthermore, whenbeam is rotated without deformation (a so-called rigid body mode) the internalforces remain equal to 0. This implies that the description of the rotation ten-sor is also good. The problems arise when the beam is bent. When this is thecase, the material frame, �xed to the beam and the spatial (reference) frame areno longer identical. It might be that some variables are expressed in terms ofthe wrong frame, which is fatal when the frames are no longer identical. Also,When the beam is curved, membrane locking plays an important role. Thisproblem is tackled by applying the reduced integration method, but perhapsthis is not su�cient.The transient solver B2TRANS is in its present form a fully edged macro-processor. It can be used in combination with the linear processor B2LIN andthe nonlinear continuation routine B2CONT. The following nonlinear elementsare tested and can be used in the processor: the C2 cable, B2.EP, B2.EP+ and



140 7. CONCLUSIONS AND RECOMMENDATIONSB2.NL beam, Q4.ST and Q4N.REBEL shell elements. The performances of theLMS schemes in combination with Jensen's algorithm are good. The methodseems to be quite fast. Although correct benchmarks test have not been carriedout yet, it can compete with the original explicit macro processor B2ETA.Out of the four LMS schemes that have been used (Park's method thetrapezoidal rule and Gear's 2 and 3 step method) the �rst two can be recom-mended. The trapezoidal rule is the perfect choice in linear transient analysis,in nonlinear cases, Park's method is the best alternative. This scheme is almostunconditionally stable for nonlinear calculations. When the time-step is chosentoo big, it can be di�cult to obtain a converged solution. A good prediction ofthe main eigenfrequency of the structure is necessary for a proper estimation ofthe initial time-step. A time-step that is smaller than 0.1 times the period ofthe main vibration mode is a good starting point. When the solutions diverge,the time-step is cut.It is possible to simulate mode-jumps by using the transient processor. Allkinds of initial values (u0; _u0) and load functions can be used; in this thesis themost fundamental initial values have been considered: the initial displacementis equal to the displacement vector of the last stable solution of the pre-bucklingpath, the initial velocity is equal to 0, the external load (or prescribed displace-ment) is constant and larger than the limit load. When a new stable solution isreached, the simulation can be continued using the continuation routine B2CONT.A new restart procedure has been implemented in this macro-processor by G.Rebel.Recommendations for Further ResearchThe work presented in this report is not �nished yet. Due to assumptions inthe theory a number of things are capable for improvement. Furthermore, newfeatures can be added to beam elements and the transient processor. A list ofrecommendations is given below.� The 3-dimensional �nite rotations beam element must be �nished �rst.When this is done, the beam B2.NL element can be developed further. Theaddition of a gradient vector in order to calculate stresses in the beam,the implementation of pre-stress, thermal e�ects and initial imperfectionsmakes the beam a fully edged member of the element library of the �niteelement package B2000.� At the moment, material behavior of the beam element is fully elastic. Aplasticity model as well as creep model can be added in order to performmore realistic post-buckling simulations.� The transient solver B2TRANS can be extended in order to solve �rst or-der di�erential equations such as heat transfer problems. This will takejust little e�ort, since in the Jensen equation, the mass matrix M canbe omitted without any consequences. Thermal conductivity elementsand Neumann elements are currently under development at the GermanAerospace Laboratory DLR and can be used in order to perform dynamicthermal analyses.



141� The current formulation for the history vector allows rotations that aremoderately small. This means that when rotations are larger than 1:0 rad,the results can become inaccurate, when the rotations are larger than� rad, the solution will diverge. The formulation of LMS methods can beimproved by taking the nonlinearity of large rotations into consideration.The history vectors h must than be calculated using compound rotations.� The mode-jumping procedure can be re�ned by using the bifurcationmode in the determination of the initial displacement vector for the tran-sient analysis. B2000 o�ers the possibility to calculate these modes withthe undeformed structure as a reference. This linear buckling mode anal-ysis is implemented as the B2BUCK macroprocessor. The results are muchbetter when these calculations are executed using the last stable solutionof the continuation analysis as a starting point. This feature need to beimplemented in either B2BUCK or B2CONT.� The procedures to simulate mode-jumps can be developed further in or-der to obtain a fully reliable simulation. The inuence of a number ofparameters in the process must be examined much closer. For examplethe inuences of the damping coe�cients, initial variables and time-step.
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AUsers manuals
The beam elements and the transient macro-processor are implemented in theB2000 platform. The user's manuals for these elements and processor and therelated input decks are given in this appendix. In the near future these pageswill be added to the B2000 processors reference manual [16]. At the end of thisappendix the usage of the elements and the macroprocessor will be illustratedby some small examples.A.1 Nonlinear Beam ElementsThe B2.EP and B2.NL nonlinear beam elements can be used for all linear andnonlinear analyses available within the B2000 platform.The B2.EP element is a 2-dimensional element and based on the papers byEriksson and Pacoste [5, 6]. The strains are based on a model proposed byReissner. Furthermore, the Bernoulli hypothesis is applied. As a consequenceof this, the beam cannot be deformed in a pure shear mode.The B2.NL is a �nite rotation 3-dimensional nonlinear beam element. Theexact description of the model can be found in papers by Simo et al. [29, 30].Again, Reissner's strain model is used. On the other hand, the Bernoulli hy-pothesis is not applied.Since both elements are 2 node elements its position is de�ned by the 2 nodepoints i and j. The B2.NL element requires an additional third node k in orderto determine the direction of the element local x axis.Element NameB2.EP or B2.NL. Using the NG parameter (originally meant to determinethe number of Gauss integration points) the curvature model of the B2.EPelement can be chosen. When NG is equal to 1 a simpli�ed model is used;when NG is equal to 2 (default), Timoshenko curvature is used.Element VariablesThe displacements ux, uy and uz and rotation rx, ry and rz at the ele-



148 A. USERS MANUALSment nodes i and j. In case of the two dimensional element B2.EP thedisplacement uz and rotations rx and ry are superuous. In the outputthese parameters will always be equal to zero.IntegrationThe B2.EP element is integrated analytically, the B2.NL is integrated nu-merically, according to a two point reduced Gauss integration. The op-tional NG parameter is obsolete.Required Input Processor element attributesmid mSpeci�es the element material number m.section parametersSpeci�es the section parameters with respect to the beam local axes. Theparameters for the two dimensional are speci�ed according tostiff area inert dummy dummy dummy dummy 1area is the beams cross section, inert the moment of inertia.The section parameters of the 3 dimensional beam element are speci�edthe following waystiff area jtors dummy dummy inertx inertyarea is the beams cross section, jtors the torsional sti�ness, inertxand inerty the moments of inertia of the beam in the element localx and y axes.type B2.EP or B2.NLSpeci�es the current element type.Optional Input Processor element attributesNone.Required Input Processor material attributesFor material type ISO specify E and �.Optional Input Processor material attributesNone.1The sti� input card expects 6 entries. Since there are only two entries required for the 2dimensional beam, the other 4 remain empty. By inserting a dummy value, i.e. 0.0 the inputprocessor will accept this input card.



A.2. B2TRANS, THE TRANSIENT ANALYSIS SOLVER 149A.2 B2TRANS, The Transient Analysis SolverB2TRANS is an independent macro-processor that performs a (non)linear dy-namic implicit time integration analysis by calling the B2000 processors B2EP(B2EPN), B2MP and B2AEM. The system of equation is solved using the B2000 LDLsolver b2es. The second order system of di�erential equations is transformedinto a �rst order one by using Jensen's algorithm [13]. This �rst order ODE issolved with a linear multi-step algorithm derived by Park [20, 21] (alternativeLMS schemes like the trapezoidal rule and Gear's methods [7] are available aswell).The macro-processor is able to operate alone, but can also be used in combi-nation with the linear macroprocessor B2LIN or the continuation routine B2CONTto perform mode-jump analyses. The explanation of the strategy parametersconcerning the nonlinear solution procedure can be found in the B2000 proces-sors reference manual [16], paragraph ADIR Analysis directivesSynopsisb2trans(parameters)Parameters-i i�leSpeci�es the input �le name (equivalent to the processor command lan-guage command input). The default input is the terminal. If the processorcommand language input �le is speci�ed by the -i parameter, the proces-sor is automatically set to batch mode since interactive control is no moreavailable.-o o�leSpeci�es the output �le name (equivalent to the processor command lan-guage command output. The default output is the terminal.-p p�leSpeci�es the name of an input �le to be executed at start-up. The in-put �le must contain valid processor command language commands. Nodefault.-e e�leSpeci�es the B2000 echo �le name (see Paragraph \Common Commands".If e�le is set to NIL no echo will be produced (default).-j jobnameSpeci�es a job name for job identi�cation by the B2000 job monitor (op-tional). No default value.Required PCL commandsadb fnameOpens the archival data base �le fname. No default value assumed.



150 A. USERS MANUALScdb fnameOpens the computational data base �le fname. No default value as-sumed.go or runTerminates the input sequence of the processor commands and startsexecution.Optional PCL commandsaccelerationCalculates and saves the acceleration on the database in the datasetACCE.GLOB.cycle.adir parameters endSpeci�es the strategy parameters for the current run. The adir parametersare to be found in the chapter \Input Description Language", paragraph\adir Analysis Directives"[16].dyna parameters endSpeci�es the time parameters for the current run as well as the startingconditions for the transient analysis. The dyna parameters can be foundin section (A.3).fullnewtonUse full newton procedure (instead of modi�ed newton) to solve the non-linear equation.load n type t0 per ampDe�nes the load functions. n is the loadfunction number. There areno limitations to the number of load-functions. All load-functions arerelated to the loads speci�ed in load case 1. The forces (or prescribeddisplacements) in case 2, if any, will be kept constant during the analysis.Case numbers 3 and higher will be neglected in the analysis. type de�nesthe type of load function. for example sin or cos. The function sets in att = t0, per is the function's period (in case of repeating functions) or thetotal length. The amplitude is denoted by amp. With the development anew function is introduced the slope function, which is a linear increasing(decreasing) function starting at t0 with a magnitude 0:0 and ending att = t0 + per with a magnitude amp.lutol parameterSets error tolerance for LU decomposition solver.predmethod parameterAn explicit Euler prediction is used if the parameter is set to 1. If set to0 a Newton Raphson prediction is used. Default is 0.



A.3. DYNAMIC ANALYSIS PARAMETERS DYNA 151A.3 Dynamic Analysis Parameters DYNADYNA de�nes the parameters which are needed for controlling the time depen-dent dynamic analysis in B2TRANS and B2ETA as well. Most of the parametersare required for both linear and nonlinear analysis. Whenever a parameter isoptional, a default value is de�ned.SynopsisadirparametersendRequired parameterstimestart valStarting time of iteration. val should be equal or larger than 0.0timeend valEnd time of iteration. val should be larger than time-start.dt valInitial time step. val should be larger than 0.0Optional parametersalfa valRayleigh's � damping coe�cient. Default value: 0.0beta valRayleigh's � damping coe�cient. Default value: 0.0initdispUse displacements in the database (calculated by B2LIN or B2CONT) asinitial displacements u0.initveloUse velocities as de�ned in the input�le as initial velocities _u0.load n type t0 per ampDe�nes the load functions. n is the loadfunction number. There are nolimitations to the number of load-functions as long as they are insertedconsecutive. type de�nes the type of load function. for example sin,cos.t0 is the time when the function sets in, per the function's period (incase of repeating functions) or the total length. amp is the amplitudeof the function. For more information see the B2000 Processors referencemanual [16],method nameDe�nes the linear multi-step method used to solve the dynamic equation.



152 A. USERS MANUALSUp till now, 4 methods are available, i.e. Parks, Gear 2 step, Gear 3 stepand the trapezoidal method, park, gear2, gear3, trapezoidal respec-tively. Default value: park.noloadIgnore load functions as de�ned previously.A.4 Known BugsDespite all the hard work, some bugs are left in the code. Since they are allpart of the user interface, they do not a�ect the results. In other words, so far,they are just annoying.Initial velocities:It is possible to assign arbitrary velocities (or spins) to speci�c nodes inthe input processor. Most likely, this should be done in the input �leusing the data set called VELO. Right now, this data set cannot be used.The velocities can be assigned by using a force data set and calling itcase 999. For instance, when node 4 must move with a speed of 3 in thex-direction, the input �le must contain the following linesFORCECASE 999 DOF 1F=3.0 4ENDLoad history function:Due to an error, in the dyna data deck in the input �le, all input after aload history function will be neglect. So, be sure that the dyna deck isalways closed with the set of load history functions, if any.DYNA DYNATIME_S 0.0 TIME_S 0.0TIME_E 1.0 TIME_E 1.0DT 0.01 LOAD 1 SIN 0. 1. 0.3ALFA 0.04 DT 0.01LOAD 1 SIN 0. 1. 0.3 ALFA 0.04END ENDThe left hand side example is correct. In the other one the data assignedto DT and ALFA will be neglected.A.5 ExamplesTo illustrate the usage of the beam elements the complete input �le of theexample as presented in section 6.1.2 is given. The mode-jumping simulationis illustrated with the input-�le and PCL commands of the Verolme test case,section 6.4.2.



A.5. EXAMPLES 153A.5.1 Large Deection of a Cantilever BeamThe archival database largedefl.adb of this test case is made with the inputprocessor B2IP. The ascii text input �le is presented below.Title "Large Deflection Analysis of a Cantilever Beam"## Obtained from## Author : C. Pacoste, A. Eriksson# Title : Element behavior in post-critical# plane frame analysis# Journal : Comp. Meth. Appl. Mech. Engrg# Vol. : 125# Year : 1995# Pages : 319-343## Declaration of options## eltype : 1 Eriksson Pacoste type (88)# Simplified bending# 2 Eriksson Pacoste type (88)# Timoshenko bending# 3 Simo-VuQuoc type (89)## lotype : 1 Tip force# 2 Tip moment# (eltype=2)(lotype=2)#ADIRANALYSIS NONLINEARLCA 1 PAS 0.0 DPAS 0.001 PAMAX 3.5 Loadcase ALCB 0 Loadcase BNCUT 15 NFACT 80 NSTRAT 0 MAXIT 15 MAXSTEP 100 Strategy parametersEPSDIS 0.001 error tolerance incr. displacementEPSR 0.001 error tolerance residual forceEND#BRANCH 1## NODE DESCRIPTION#NODES1 0.0 0.0 0.02 25. 0.0 0.03 50. 0.0 0.04 75. 0.0 0.05 100. 0.0 0.0# 999 0.0 1.0 0.0END## ELEMENTS#ELEMif (eltype=1) (



154 A. USERS MANUALSTYPE B2.EP NG 1 1: simpli�ed 2 dimensional)if (eltype=2) (TYPE B2.EP NG 2 2: Timoshenko 2 dimensional)if (eltype=3) (TYPE B2.NL NG 2 3: 3 dimensional)MID 1 Material id. 1STIFF 0.6 0.0 0.0 0.0 0.0 0.018 0.018 Sti�ness parameters, resp.101 1 2 999 Area, Torsional sti�ness102 2 3 999 Shear sti�ness in x and y direction103 3 4 999 Moment of inertia in x and y direction104 4 5 999END## BOUNDARY CONDITIONS#BOUNDLOCK LLLLLL 1 Node 1 fully lockedALLLOCK FFLLLF All out-of-plane deformations lockedEND## FORCES#FORCEif (lotype=1)(CASE 1 DOF 2 Nodal displcement in y directionP=1000. 5 Unit load, load applied at tip)if (lotype=2)(CASE 1 DOF 6 External moment around z axisP=10000. 5 Unit moment, moment applied at tip)END## MATERIAL CONDITIONS#EMATMID 1 Material id. 1TYPE BEAM E 1.E8 P 0.3 Beam type materialENDMID Young's modulus, Poisson's ratioEND#ENDBRANCH#RUN When the archival database is copied to obtain a computational databaselargedefl.cdb the continuation procedure can be started. After typing[001]dutlcc1 % b2contthe following PCL commands must be given.Continuation procedure Macro Processor (b2cont), Version 1.9



A.5. EXAMPLES 155B2CONT -> adb largedefl.adb Archival databaseB2CONT -> cdb largedefl.cdb Computational databaseB2CONT -> fullnewton Full Newton method usedB2CONT -> go Start analysisA.5.2 The Verolme PanelThe archival database verolme.adb is constructed in an ordinary way usingthe B2IP input processor. The input �le with the speci�c strategy parametersis shown below.TITLE='Modejumping analysis of the Verolme Panel'## NONLINEAR ANALYSIS STRATEGY PARAMETERS#ADIRANALYSIS NONLINEAR Nonlinear analysisLCA 1 PAS 0.0 DPAS 0.01 PAMAX 100.0 Loadcase ALCB 0 Loadcase BNCUT 10 NFACT 10 NSTRAT 0 MAXIT 15 MAXSTEP 300 Strategy parametersEPSDIS 0.0001 Error tolerance incr. displacementEPSR 0.0001 Error tolerance residual forceEND## DYNAMIC ANALYSIS#DYNATIMESTART 0.0 Starting timeTIMEEND 0.3 Ending timeDT 0.0001 Initial timestepEND## BRANCH DIRECTIVES#BRANCH=1#BDIRMATERIAL=ELASTICDEFORM=NONLINEAREND## NODES Node generation#NODES1 -2.50000E+02 -1.71570E+02 4.09371E+012 -2.25000E+02 -1.71570E+02 4.09371E+013 -2.00000E+02 -1.71570E+02 4.09371E+014 -1.75000E+02 -1.71570E+02 4.09371E+01. ... ... .... ... ... ...438 1.75000E+02 1.71570E+02 4.09371E+01439 2.00000E+02 1.71570E+02 4.09371E+01440 2.25000E+02 1.71570E+02 4.09371E+01441 2.50000E+02 1.71570E+02 4.09371E+01END#



156 A. USERS MANUALS# ELEMENTS Element de�nition#ELEMTYPE Q4N.REBEL MID 1 THICK 1.0 NGAUSS 4 NIM 2 Rebel 4 node shell element1 1 2 23 22 material id. 122 22 23 44 43 thickness43 43 44 65 64 4 points Gauss interpolation64 64 65 86 85.. .. .. .. .... .. .. .. ..356 356 357 378 377377 377 378 399 398398 398 399 420 419419 419 420 441 440END## BOUNDARY CONDITIONS#BOUNDLOCK FLLLLL 21/441/21 Edge ILOCK LLLLLL 1/421/21 Edge IIILOCK FFLFLL 1/21 421/441 Edge II and IVEND## MASS MATRIX#MASSTYPE CO Constistent mass matrixELEM 1/419 All elementsEND## PRESCRIBED DISPLACEMENT VECTOR#FORCECASE=1 Loadcase 1TYPE=D DOF=1 Prescribed displacementP=-0.2 21/441/21 Unit displacement on edge 1END#ENDBRANCH## MATERIAL PROPERTIES#EMATMID 1 Material id. 1TYPE ISO E 7.0E6 P 0.272 Isotropic material, Young'sDENS 2.7E-6 modulus, Poisson's ratioENDMID Density.END#RUN The computational database verolme.cdb can be created by copying thecontents of the archival database to the computational database. The continu-ation processor can now be started. In order to obtain accurate results, a fullNewton iteration procedure has been used.



A.5. EXAMPLES 157After typing[002]dutlcc1 % b2contthe following PCL commands must be given.Continuation procedure Macro Processor (b2cont), Version 1.9B2CONT -> adb verolme.adb Archival databaseB2CONT -> cdb verolme.cdb Computational databaseB2CONT -> fullnewton Full Newton method usedB2CONT -> go Start analysisThe path becomes unstable �rst at step number 7. The last stable result, step6, will be used to initiate the transient analysis. The corresponding load-factorat step 7 is � = 0:316. To give the structure a large enough `boost' the constantload-factor during the jump is set to � = 0:375. De transient processor is startedby typing[003]dutlcc1 % b2transThe corresponding PCL commands are:Transient Analysis Macro Processor (b2trans), Version 1.9B2TRANS -> adb verolme.adb Archival databaseB2TRANS -> cdb verolme.cdb Computational databaseB2TRANS -> fullnewton Full Newton method usedB2TRANS -> predmethod 1 Explicit euler prediction usedB2TRANS -> adir Change ADIR directivesB2TRANS -> step 6 Start at step 6B2TRANS -> endB2TRANS -> dynaB2TRANS -> timestart 0.0 Start timeB2TRANS -> timeend 0.3 End timeB2TRANS -> dt 5.0e-5 Initial timestepB2TRANS -> alfa 150.0 Rayleigh's damping coe�cientsB2TRANS -> beta 6.0e-5B2TRANS -> endB2TRANS -> load 1 step 0. 0.3 3.32 Load functionB2TRANS -> go Start analysis



158 A. USERS MANUALS



BNumerical Implementation
The implementation of the beam elements and the transient processor has re-sulted in a large amount of new source code. There is no need to print thiscode here, since it can always be looked up in the B2000 master version. Just aglobal outline is given in this appendix. For more information about the code,one can refer to the list of all created and modi�ed subroutines which is givenin appendix C.B.1 Beam ElementsAs said before, the B2000 platform is designed to be used in a research environ-ment. This means that new developments in FEM analysis can be implementedin the code very easily, using standard formats. In principle, the implementa-tion of a new element, whether it is a structural, a viscous or a heat transferelement, can be done by creating a single source �le. In this �le, the construc-tion of the element local property matrices (e.g. sti�ness or heat conductivitymatrices) of a single element are calculated. All standard operations, such asthe construction of the total global matrices of the model and the sky-lining ofthese matrices are performed by other routines.Each element in the B2000 package has its own id number. The 2-dimension-al beam element that has been developed in this thesis has got number 88,the two node, 3-dimensional beam has got number 89. Element number 90is reserved for the three node 3-dimensional beam element. The mechanicalproperties are given by the internal forces vector and the sti�ness matrix, thedynamic properties are given by the element mass matrix. For historical rea-sons, the creation of the mass matrix is done by an external source �le. Thetotal number of new source �les is therefore equal to 2 �les per element, one forthe mechanical properties (internal forces vector and the sti�ness matrix) andone for the dynamic properties (mass matrix).



160 B. NUMERICAL IMPLEMENTATIONB.1.1 Internal Forces and Sti�ness MatrixThe assemblage of the element mechanical properties is done by the subrou-tine b2epn.F, where n is the element id number, in this case b2ep88.F andb2ep89.F. Both �les have a standard argument list in which the input as wellas the output parameters (�rst- and second variation matrices) are included.The most important (and in this case relevant) input variables are the nodaldisplacements and rotations of the element (stored in the array disp(*)) andthe incremental displacements and rotations ddis(*). Material data, the el-ement prevariational package elprev(*) and the element updated referenceframe elurf(*) are also important input variables. The displacement arraysare expressed in terms of the branch global coordinate system. Since the elementproperties are calculated in the element local coordinate system, the displace-ments must be transformed into this coordinate system �rst. The transforma-tion matrix which is used for this operation can be obtained from the elementprevariational package.The output of this routine, i.e. the element �rst variation vector elfvar(*)and the element sti�ness matrix elsvar(*), must be transformed the otherway around. These quantities are calculated in the element local frame andmust be transformed to the branch global system. Since the sti�ness matrix isalways symmetrical, just the upper triangle is stored in the array elsvar(*).When the sti�ness matrix is not symmetrical, which is the case with the 3-dimensional beam element B2.NL, the matrix must be split into a symmetricand a skew-symmetric part �rst. The symmetrical part is then copied to theelsvar(*) array.All the element �rst and second variation matrices (in branch-global for-mat) are collected by the element kernel interface module b2ep0. The macro-processor B2EPN places all element matrices in the right position and creates theglobal �rst- and second variation vector. The second variation vector (whichis still the upper triangle of the sti�ness matrix) is sky-lined by an externalprocessor B2AEM. The results of this operation, the band of the matrix and itsaddress vector are stored on the database as the datasets SVAR.GLOB (band)and SVAR.ADR (address vector).B.1.2 Mass MatrixThe assemblage of the global mass matrix is done in the same way by theprocessor B2MP. The element mass matrices are constructed in the subroutinesb2ep88.F and b2ep89.F respectively. The description of the mass is linear,which means that it is independent of the displacements and rotations. Thisimplies that there are less input variables. Just general data, such as materialdensity parameters and element dimensions (via the elprev(*) array) is input.The element mass matrix, in branch-global coordinate system, sme(*) is theonly output.The element mass matrix can be stored in two forms. When a consistentmass description is used, the mass matrix is symmetric and fully �lled. Theoutput matrix sme(*) is then the upper triangle of this matrix. When a lumped



B.1. BEAM ELEMENTS 161elprev(1) empty elprev(8) moment of inertia I2elprev(2) empty elprev(9) emptyelprev(3) empty elprev(10) emptyelprev(4) beam length L elprev(11) Young's modulus Eelprev(5) cross section A elprev(12) Poisson's ratio �elprev(6) moment of inertia I elprev(13) mass density �elprev(7) cross section A2 elprev(14) emptyTable B.1: Element prevariational data package of 2 dimensional beamdiagonal description is used, the mass matrix is just a diagonal matrix and inorder to safe expensive memory space, sme(*) is smaller and just contains thesediagonal terms.In the transient processor, the global sti�ness and the mass matrices areadded with the dynamic sti�ness matrix as a result. It need no discussionthat this can only be done when both matrices are of the same size, i.e. whena consistent mass matrix is used. In the derivation of mass matrices for thenonlinear beam elements, a reduced lumped diagonal mass matrix has beenproposed. These matrices have been implemented within B2000 as consistentmass matrices, with just zeros in the o�-diagonal terms. A pleasant propertyof diagonal matrices is that they are invariant of the coordinate system. Thismeans that the expression for such matrices in an element-local system is equalto the expression in a branch-global system, which implies that there is notransformation needed.B.1.3 Element Prevariational Data PackagesThe previously mentioned elprev(*) array contains a number of constants,which describe the initial state of an element. This data does not change andis available throughout the analysis. All data in the array is stored in a dou-ble precision format. The length of the array is de�ned in the include �leb2ipepar.inc. The elprev(*) arrays of all elements in the model are storedin one single database, called ELPREV.In this case, the beam dimensions, its original position vectors (which areused to build the transformation matrix) and sti�ness parameters are storedin this array. The exact location of the variables within the array of both the2-dimensional beam element as well as the 3-dimensional beam element can befound in the tables B.1 and B.2.B.1.4 Element Updated Reference FrameThe description of the rotation tensor of the 3-dimensional element is basedon a nonlinear formulation. A new rotation tensor is calculated by updatingthe old one, using incremental rotations. This implies that at every step, therotation tensor (or the so-called reference frame) must be saved on the database.It can be read at the next step and used to calculate the new rotation tensor.This data is stored in the elurf(*) array. This array is constantly updated (as



162 B. NUMERICAL IMPLEMENTATIONelprev(1) length in x-dir. elprev(11) Young's modulus Eelprev(2) length in y-dir. elprev(12) Poisson's ratio �elprev(3) length in z-dir. elprev(13) shear modulus Gelprev(4) beam length L elprev(14) nx direction vectorelprev(5) strain sti�ness EA elprev(15)elprev(6) torsional sti�ness GJ elprev(16)elprev(7) shear sti�ness GAx elprev(17)elprev(8) shear sti�ness GAy elprev(18)elprev(9) bending sti�ness EIx elprev(19)elprev(10) bending sti�ness EIy elprev(20)Table B.2: Element prevariational data package of 3 dimensional beamopposed to the elprev(*) array which is kept constant). It can contain anyinformation of the type double precision real. The length of this array is alsode�ned in the b2ipepar.inc include �le. The contents the elurf(*) array islisted in table B.3.B.2 B2TRANS macro-processorsAs opposed to the rather straightforward implementation of new elements, thedevelopment of a completely new macro-processor requires are more fundamen-tal approach. There is no speci�c format in which the macro-processor mustbe written. As a result of this, many decisions regarding the internal structureof the processor are left to the programmer.Although the B2TRANS macro-processor is based on the implicit time inte-gration processor B2IDTI by K. Yildirim [34], it has been rewritten completelyfor a number of reasons. First of all Yildirim's version was not stand alone. Itused the B2LIN macro-processor as a front end. The sti�ness and mass matriceswere calculated by this macro-processor. The B2IDTI program only performedthe actual time integration procedure. Strictly speaking, it was therefore nota macro-processor, since it could not be used as an independent processor.Second, there was no interface with the input processor B2IP. All analysis pa-rameters must be given by PCL commands. Finally, little attention was paidto the internal structure of the program. For example, there was no unique useof static of dynamic allocated variables.When rebuilding the program, two macro-processors have been used as anexample. The �rst one is B2ETA. This macro-processor performs the same ana-lysis as B2TRANS, namely a time integration analysis. When they are consideredas black boxes, they must be identical. For this reason and in order to maintainthe unity throughout the B2000 package, the user interface for B2TRANS is copiedfrom B2ETA.The internal structure of the source code and the data storage is copied frommacro-processor B2CONT. The path-following technique which is implemented inthis processor has many resemblances to the implicit transient analysis. Bothmethods calculate the response of a structure step wise, using an iterative so-lution procedure. Also the way the data is stored on the database is copied



B.2. B2TRANS MACRO-PROCESSORS 163IntegrationPoint �=�0:577 � = 0:577 � = 0:0elurf(1) Init. agelurf(2) �1;1 elurf(20) �1;1 elurf(38) �1;1elurf(3) �2;1 elurf(21) �2;1 elurf(39) �2;1elurf(4) �3;1 elurf(22) �3;1 elurf(40) �3;1elurf(5) �1;2 elurf(23) �1;2 elurf(41) �1;2etc. etc. etc.elurf(11) !1 elurf(29) !1 elurf(47) !1elurf(12) !2 elurf(30) !2 elurf(48) !2elurf(13) !3 elurf(31) !3 elurf(49) !3elurf(14) 1 elurf(32) 1 elurf(50) 1elurf(15) 2 elurf(33) 2 elurf(51) 2elurf(16) 3 elurf(34) 3 elurf(52) 3elurf(17) �1 elurf(35) �1 elurf(53) �1elurf(18) �2 elurf(36) �2 elurf(54) �2elurf(19) �3 elurf(37) �3 elurf(55) �3Table B.3: Element updated reference frame data package of the 3-dimensionalbeam elementfrom this macro-processor, which bene�ts the interaction between B2TRANS andB2CONT. This is important regarding the most important goal for the new tran-sient processor: the calculation of mode-jumping phenomena.The various aspects of the macro-processor B2TRANS are regarded in thissection. This will be done in a chronological fashion, from the initialization ofthe program to the �nal output. In �gure B.1 a ow chart is presented whichcan be used as a guide through the program.B.2.1 InitializationIn the main �le, b2trans.F all I/O is initialized. The archival and the computa-tional databases are opened and the log �le, in which the analysis is evaluated,is created. The initialization of the integration process is done in the commandmodule of the processor. In this �le, called b2transcm.F, all necessary data isread from the archival data base. Furthermore, the mass and sti�ness matricesare constructed.Strategy ParametersThe initialization of the analysis also includes the reading of all strategy pa-rameters. The strategy parameters can be divided into two classes. The �rstclass contains data dealing with the time integration process. This informationis stored on the archival database in the dataset DYNA. The contents of thisdataset is given in table B.4. The second class contains the nonlinear analysis



164 B. NUMERICAL IMPLEMENTATIONName Description Type 1) DefaultALFA Rayleigh's constant � E 0.0BETA Rayleigh's constant � E 0.0INITDISP Initial displacement ag I 0 (o�)INITVELO Initial velocity ag I 0 (o�)METHOD LMS method C PARKSTARTTIME starting time E -ENDTIME end time E -DELTAT initial time step E -LOADFUNC Number of history functions I 01) I=integer, E=single precision real, C=characterTable B.4: Data entries in the DYNA dataset used by B2TRANSName Description Type 1) DefaultANALYSIS Linear or nonlinear analysis C LINEARFULLNEW Full or modi�ed newton i 1ICY Starting cycle i 0MAXIT Maximum number of iterations i 5EPSDIS error tolerance incr. displacement e 0.001EPSEQ error tolerance res. force e 0.001MAXSTP maximum number of steps i 99991) I=integer, E=single precision real, C=characterTable B.5: Data entries in the ADIR dataset used by B2TRANSstrategy parameters, which control the iteration process. They can be found inthe dataset ADIR, table B.5.Both the dynamic and the nonlinear analysis parameters are immediatelystored in common blocks, which are de�ned in the include �le b2trans.inc.Doing so, the strategy parameters are available in all parts of the program.Initial Conditions and Unit ForceWhen the strategy parameters are read and stored in the common blocks, theinitial conditions are obtained. The initial displacement u0, initial velocity_u0 and the unit force function f ext0 must be read from the database. Whenthe initial displacement is the result of a quasi-static analysis (B2CONT) it iswritten in the dataset DISP.GLOB...n, where n is the cycle number. Whenthe initial displacement is obtained from a linear static analysis , it is storedin the data set DISP.GLOB.1. Initial velocities can always be found in thedataset VELO.GLOB...n, the unit load vector in FORC.GLOB.1. It is also possibleto deform the structure using prescribed displacements. The unit prescribeddisplacement vector is stored in the dataset GDC.GLOB...1, its address vectorin GDCW.GLOB.



B.2. B2TRANS MACRO-PROCESSORS 165Construction of the matricesThe construction of the mass and sti�ness matrix as well as the internal forcevector is already explained in the sections B.1.1 and B.1.2, which is an inter-pretation from the element point of view. In this section the construction ofthe matrices will be considered from the transient solver point of view.The mass matrix is constructed using the B2000 processor B2MP. This pro-cessor constructs the complete branch-global mass matrix of each branch of themodel. The output is written in a vector called EMSS.br, where br denotes thebranch number. The total mass matrix is constructed out of the branch relatedmass vectors using the processor B2AEM. The resulting matrix is stored in twodata sets EMSS.GLOB and EMSS.ADR. The actual sky-lined band of the matrix isstored in the �rst dataset. The addresses, which mark the position of the bandare stored in the second one. Since the mass matrix is linear and independentin the time domain, this procedure only has to be done once.The sti�ness matrix can be either nonlinear or linear. The nonlinear sti�nessmatrix is assembled using the processor B2EPN, following the same procedureas when assembling the mass matrix. First the sti�ness matrix is calculatedper branch. The results are stored in the data sets ELSV.br:n, where n denotesthe cycle number. The matrix assembler creates a global sti�ness matrix forthe complete structure. The band is stored in the data set SVAR.GLOB.n, theaddresses in SVAR.ADR.n. The consistent mass and the sti�ness matrices aresky-lined using the same procedure. As a result of this, both address datasetsEMSS.GLOB and SVAR.GLOB are identical. One of them can be deleted imme-diately. The internal forces vector is calculated also calculated by the B2EPNprocessor. The result is stored in the dataset FVAR.GLOB.n. When a linearelement description is used, the sti�ness matrix is calculated by B2EP.B.2.2 Time Integration ProcessWhen the initial conditions, the internal forces vector and the mass and sti�nessmatrices are known, the actual time integration process can be prepared. Thisis done in a new subroutine, called b2trlms.F.History VectorsFirst the auxiliary vector v and the history vectors hun and hvn are calculated.The auxiliary vector is composed out of the internal forces vector and the cur-rent load. This is done using MEMCOM commands. The big advantage of thismethod is that the data need not to be read by the program. The manipu-lations are carried out in the database itself, which saves a lot of I/O time.The auxiliary vector is stored in the dataset V.PREV.1. The history vectors arecalculated following the same procedure. They are stored in the datasets UHISand VHIS.



166 B. NUMERICAL IMPLEMENTATIONLoad FactorThe load-factor �(t) for the current time-step tn is also calculated in this sub-routine. The load-factor is the sum of a maximum of 20 load-functions. Thevalue of these load-functions is determined by the subroutine b2mapch.F. Thisroutine returns the function value which corresponds to ther current time tn.The function values of all load-functions are summed with the total load-factor�(tn) as a result.Dynamic Sti�ness and Force VectorOut of the history vectors, the load-factor and the mass- and sti�ness matrices,the complete Jensen equation can be formed. This is done in two di�erentways. In the linear case, the dynamic sti�ness matrix E is formed and storedin the dataset EVAR.GLOB. The dynamic force vector g and the forces due tothe prescribed displacement gp are also determined and stored in the datasetsRHS and FRHS respectively. These calculations are performed in the subroutineb2trlin.F. In the nonlinear case the Jacobian Hn, the residual vector r andthe prescribed force vector gp are calculated in the subroutine b2trnonl.F andstored in the datasets HVAR.GLOB.n, RHS and FRHS.B.2.3 Solution TechniquesWhen the various parts of the Jensen equation are calculated and stored onthe dataset, the equations can be solved for un using the equation solver b2es,which solves the general linear (or linearized) equationAx = b for the unknownx. The matrix A is �rst decomposed. The result is used to solve the equationusing a LDL technique. When the matrix is already decomposed, the �rst stepcan be skipped. In this section the solution technique for both the linear andthe nonlinear equation are regarded.Linear EquationThe solution of the linear equation is rather straightforward. The dynamicsti�ness matrix E is constant for all time-steps. As a result of this it mustonly be decomposed once. The factorized matrix can be used throughout thecalculations, for every time step. The right hand side vector g � gp containsalso the internal forces due to the prescribed displacement. These prescribeddisplacements are still part of the system of equations Eun = g � gp whichis therefore undetermined: the number of equations is larger than the numberof unknowns. This problem is also tackled by the b2es processor. Insteadof reducing the number of equations to the number of unknowns, which is arather time- and memory consuming operation, penalty values are used. Firstthe solver checks which rows and columns of the dynamic sti�ness matrix belongto the described degrees of freedom. The values of these positions are replacedby an in�nite large number, say 1 �106 times the highest value in the originalmatrix. The corresponding terms in the right-hand-side vector are replace by0. As a result of this, the prescribed d.o.f. in the displacement vector u will



B.2. B2TRANS MACRO-PROCESSORS 167become zero (or almost zero). Later these values are replaced by the originalprescribed values.Nonlinear EquationThe solution procedure for the nonlinear equation is equal to the describedabove, but with some exceptions. In this case the solution must be founditeratively and the matrix of the equation H is not constant for all time steps.The solution can be found using a full- or a modi�ed Newton iteration method.The only signi�cant di�erence between these two methods is that for the �rstmethod the Jacobian H must be calculated and decomposed at every iterationstep. When using the modi�ed Newton procedure the Jacobian is constantfor all iteration steps. It just needs to be calculated and decomposed at thebeginning of the iteration process. The solution of this equation, �u must beadded to the previous solution ukn. The rotational d.o.f. in this incrementaldisplacement vector are added according to the theorem as described in section4.6.3. This is done in a general subroutine b2cirot.F, previously used in thecontinuation routine.After every iteration step the convergence is checked by evaluation the to-tal length of the residual force vector, jjrjj and the length of the incrementaldisplacement jj�ujj. When both values are approaching 0, the solution is con-verging. When the values are smaller than a certain value, section 4.6.4, thesolution un is accurate enough and can be saved on the database as the dis-placement of this step, DISP.GLOB.n. When the solution does not convergewithin a maximum number of iterations, the iteration procedure is aborted.The time step h is cut and the iterations start from the beginning with theprevious solution un�1 as a starting point. This implies that the complete pro-cedure must be repeated, starting with the assemblage of the history vectorshun and hvn. When the maximum number of time step cuts is exceeded thecomplete analysis is aborted.B.2.4 Additional CalculationsWhen a converged solution un is found, some additional calculations must bedone. These calculations are the same for both the linear and the nonlinearequation and are therefor executed in the central part of the LMS module,b2trlms.F. The data is stored on the database and the calculations are preparedfor the next step.Velocity, Acceleration and EnergyThe velocity of the current time-step _u is calculated using the converged solutionand the history vector hun. The result is stored in the dataset VELO.GLOB.n.The acceleration will be calculated on request, using the current velocity and anadditional history vector1 h _un. The result is stored in ACCE.GLOB.n. Finally,the1this history vector is not relevant for the Jensen procedure, but can be determined at thesame time as the other two history vectors.



168 B. NUMERICAL IMPLEMENTATIONkinetic and strain energy are also calculated and saved in the description tableof the dataset DISP.GLOB.n.Removing Temporary DatasetsDue to the complicated solution method, a large amount of datasets is created.Most of them are as large as the total number of degrees of freedom, suchas the displacement and internal forces datasets. The datasets which containa sky-lined matrix, such as the mass, the sti�ness and the dynamic sti�nessmatrix (and the Jacobian) are extremely large. In a nonlinear analysis twoof these datasets are created at every step, i.e. the sti�ness matrix K andthe Jacobian H. In principle, they are not needed in the future and can bedeleted after each step. In the older versions of MEMCOM, a dataset could not beremoved completely. Just the label was deleted. The size of the database didnot change. In newer version of MEMCOM the database can be reassembled (theempty datasets are removed) using the defrag command.B.3 DatasetsSince all numerical operations are executed in the database, every variable inthe Jensen algorithm has its corresponding dataset entry. Apart from a numberof temporary datasets, named A, B, C and D the most important ones are listedin the table below.Dataset name Symbol DescriptionACCE.GLOB.n �un acceleration at step nDDIS.GLOB �u incremental displacementDISP.GLOB.n un displacement at step nEMSS.ADR address vector of mass matrixEMSS.GLOB.0 M band of the mass matrixEVAR.ADR address vector of dynamic sti�ness matrixEVAR.GLOB.n E band of dynamic sti�ness matrixFINT Ku internal forces vector (linear)FORC.GLOB..1 f ext0 Unit force vector, f ext(t) = �(t)f ext0FRHS gp prescribed dynamic force vectorFVAR.GLOB.n f intn �rst variation vector at step n



B.3. DATASETS 169GDC.GLOB up0 unit prescribed displacement vectorGDCW.GLOB prescribed displacement address vectorHVAR.ADR.n address vector of Jacobian at step nHVAR.GLOB.n Hn band of Jacobian at step nRHS g right hand side of linear equation (dyn. force)r residue vectorSVAR.ADR.n address vector of si�ness matrixSVAR.GLOB.n Kn band of the sti�ness matrixUHIS hun History vector of displacement uVELO.GLOB.n _un Velocity vectorVHIS hvn History vector of auxiliary vector v at step nVHIS.PREV hvn�1 History vector of auxiliary vector v at step n�1
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B2TRANSThis ow chart of the B2TRANS macropro-cessor contains all important actions. Inorder to save space, additional computa-tion, such as the algorithm which updatesthe rotational increments or the routinesto solve the (linearized) system of equa-tions are not included.Figure B.1: B2TRANS ow chart



172 B. NUMERICAL IMPLEMENTATION



CSource Code
The source code of the B2000 platform is available for every user. It is thereforimportant to keep up a good description of every piece of the syntaxis of theprogram. In principle, this is done in two ways. The most important is theB2000 Programmers handbook in which the syntaxis of every subroutine isexplained with all input ags. Secondly the code is described in the sourcecode itself by using comment statements. This last method is not very o�cialand it is the responsibility of the programmer to maintain the comment-linesin his source code.All new pieces of source code that have been written during this researchare reported in this paper. A short overview of their functionality is given aswell. Although the �nite element method B2000 is claimed to be fully modular,some new implementations also required changes in existing parts of the sourcecode. In order to prevent miscommunications, all changes to these source �lesare reported in this chapter.C.1 2 dimensional beam element, B2.EPThe 2 dimensional, nonlinear beam element B2.EP could be implemented inB2000 very easily. This straightforward element did not require any additionalchanges in existing source code: it could be inserted as a standard element.The element has got number 88. All source �les that are related to this elementstart with the code b2ep88.Filename Descriptionb2ipepar.inc The new and sizes of the elements are de�ned in thisinclude �le.enum=88 element numberenam='B2.EP' element namennel=2 number of nodes



174 C. SOURCE CODEnncl=3 number of reference nodeslefo=12 number of d.o.f.'sndfn=20 length of elprev arrayflgn=1 nonlinear element agb2ep88.F Main element �le. In this routine all the the otherroutines are invoked. Furthermore, the transformationfrom Antman's parameters to nodal displacements, aswell as the transformation from the element local to thebranch global coordinate system is executed here.b2epv88.F In this �le, the prevariational data is calculated andstored in the elprev(*) array. The structure of thisarray can be found in table B.1b2ep88elbg.F The transformation matrix for the coordinate systemtransformation is created in this routine. The x and ycoordinates of both nodes are used to do so. The actualtransformations are done in the main �le.b2ep88fvar.F In this �le the �rst variation vector (for both the Tim-oshenko and the simpli�ed beam) in terms of Antman'scoe�cients are calculated.b2ep88svar.F The second variation matrices for both beams in termsof Antman's coe�cients are calculated in this routine.b2ep88trans.F In this routine the matrices for the transformation ofthe �rst and second variation to nodal displacementsand rotations are calculated.C.2 3 dimensional beam element, B2.NLThe implementation of the 3 dimensional nonlinear element has been done usingthe same procedures as described above. Again the parameters of the elementare set in the b2ipepar.inc �le. The 2 node 3 dimensional element has gotnumber 89. Number 90 is reserved for the 3 node nonlinear beam element,which is due to be implemented in the near feature.Filename Descriptionb2ipepar.inc The new and sizes of the elements are de�ned in thisinclude �le.enum=89 element numberenam='B2.NL' element name



C.2. 3 DIMENSIONAL BEAM ELEMENT, B2.NL 175nnel=2 number of nodesnncl=3 number of reference nodeslefo=12 number of d.o.f.'sndfn=6lepr=20 length of elprev arrayleuf=55 length of elurf arrayflgn=1 nonlinear element agb2ep0.F The element routines are invoked in this kernel routine.There are 4 additional arguments (among which the in-cremental displacement ddis(*) added the list for theb2ep89.F element. The syntaxis as used by G.Rebel forthe implementation of his �nite rotation shell elementsis used.1089 call b2ep89(coor, disp, etrans,* eprop, epropall, elaminates,* elprev, elurf, elfvar, elsvar, elstab,* eltfor, ellfor, plasold, plasnew,c-JR * ddis, d, delfvar, delsvar,c-JR * work, irad, istat)b2ep89.F Main �le for the 3 dimensional beam element. In this�le the numerical integration as well as the completeconstruction of the �rst and second variation matricesare tackled. Also the transformation from element localto branch global and vice versa.b2epv89.F The prevariational package of the element is created inthis routine. The contents of the elprev(*) array isgiven in table B.2.b2arr2tens.F This routine transforms the aixal vector into its skewsymmetric tensor form.b2tens2arr.F This routine performs the inverse operation of the pre-vious routine. A skew symmetric matrix is transformedinto a axial vector.b2ep89cspat.F The constitutive matrix Ĉ is created in this subroute.The matrix is �rst written in the moving frame. It istransformed into the spatial base with use of the rota-tion tensor �.



176 C. SOURCE CODEb2ep89gstif.F The geometric sti�nes matrix B is created in this rou-tine.b2ep89xi.F Construction of the �rst di�erential operator � accord-ing to equation (3.102).b2ep89psi.F Construction of the second di�erential operator 	 ac-cording to equation (3.97).b2epbeamrot.F The calculations of the updated rotation tensor, as wellas the spatial strain and curvature vector are done inthis subroutine. This routine can also be used by thefeature 3 node elementb2multmtv.F This subroutine is a variant of the b2multmv.F and isable to multiply a transposed matrix by a vector.C.3 Transient Solver B2TRANSIn this section the changes to the input processor and the new source �le forB2TRANS are listed.Filename Descriptionb2ipdyna.F The dynamic strategy parameters are extended witha number of new variables, such as DT for the initialtimestep, METHOD to choose the LMS scheme that mustbe used, variables to determine the Rayleigh constants,ALFA and BETA and variable to determine the presenceof the initial displacements, initial velocities and forcefunction.b2maputil.F A new history function is added in this routine. Apartfrom the trigonemetric functions and step functions, theSLOPE function is available. The slope function is alinear increasing (decreasing) function.b2pclmap.F The PCL input command for the slope function isadded.



C.4. MISCELLANEOUS 177Created source �lesFilename Descriptionb2trans.F Main �le. In this �le all the memcom data base com-mands are intialized, the input is read and the actualcalculations are started.b2transcm.F Command module. In this subroutine the actual tran-sient calculations are executed. Within this source �le,a number of speci�c subroutines can be distinguished.The calculations are initiallized in the main routineis b2transcm. The history vectors are calculated inb2trlms. The Jensen equation is also set up in thisroutine. The linear or nonlinear system of equation issolved in b2trlin or b2trnonl respectively.b2getdyna.F Memcom related �le. The dynamic analysis parametersare read from the dataset DYNA in the archival databaseand stored in common blocks.b2transdyna.F In this �le the dthe PCL are read.b2putdyna.F PCL related �le. The dynamic analysis parametersobtained in the PCL command line are stored in thedataset DYNA.b2setdynasol.F In this routine all additional data of a single timestep,such as current time, kinetic energy and convergencestatus is written to the descriptor table of the idsplace-ment data set DISP.GLOB.n.C.4 MiscellaneousA number of �les have been altered for various purposes. Most of the �lescontain the element mass matrix description for the cable and the �ntie rotationshell elements.Filename Descriptionb2mp.F Previously, in the construction of the mass matrix, theelement prevariational package could not be used. Aftera small adjustment, the dataset PREV is read and storedas the array elprev(*).



178 C. SOURCE CODEb2mp39.F Mass matrix of the 2 node nonlinear cable element (C2)This reduced lumped diagonal mass matrix is stored asa consistent mass matrix in order obtain a skylined massmatrix of the same size as the sti�ness mastrix.b2mp91.F Mass matrix of the Q4N.REBEL 4 node shell element, seeb2mp39.Fb2mp92.F Mass matrix of the Q8N.REBEL 8 node shell element, seeb2mp39.Fb2mp93.F Mass matrix of the Q9N.REBEL 9 node shell element, seeb2mp39.F


